HI,欢迎来到起点商标网!
24小时服务QQ:2880605093

一种陶瓷材料及其制备方法与应用与流程

2021-01-30 18:01:32|206|起点商标网
一种陶瓷材料及其制备方法与应用与流程

[0001]
本发明属于特种陶瓷材料科学技术领域,具体涉及一种新型功能陶瓷材料配方及其制备方法与应用。


背景技术:

[0002]
随着通信技术的快速发展,作为整个系统重要部分的谐振器和滤波器中重要组成部分的介质陶瓷获得了广泛的研究和关注。微波介质陶瓷是一种新型功能电子陶瓷,具有介电常数高、损耗低、频率温度系数小等特点,用这种微波陶瓷材料可以制成介质谐振器、双工器、介质滤波器等器件,广泛应用于移动通信基站、直放站、雷达、卫星定位导航系统等众多领域,以满足上述基站天馈系统中滤波单元小型化和低损耗等高性能指标的需要。特别是当今的5g时代,传统金属腔体滤波器不能实现高抑制的系统兼容问题,而陶瓷介质材料腔体可以解决这些问题,微波介质陶瓷滤波器是未来5g重要的解决方案。随着未来中国5g基站建设数量的不断增加,2019-2023年市场容量将超过336亿元,复合年均增长率为80.32%。
[0003]
在5g通讯中对中低介电常数的材料应用较多,这里低介电常数材料主要指介电常数7~10之间的材料。低介电常数材料通常以镁橄榄石(mg
2
sio
4
)体系为主,镁橄榄石(mg
2
sio
4
)具有低的介电常数(6.8左右)、较高的qf(270000),适合作为低介电常数介质谐振器的一种微波介质材料;但mg
2
sio
4
陶瓷具有较大的负谐振频率温度系数(-67ppm/℃),而通讯滤波器或谐振器要求温度系数为0
±
10ppm/℃。通常解决方案是添加catio
3
材料(温度系数+800ppm/℃)来修饰温度特性,但由于catio
3
材料的qf值很低,只有3600,导致材料整体qf只有30000~40000,无法满足5g的要求。另外5g通讯滤波器多为异形件,很难通过一体成型完成,通常陶瓷材料烧结后,还需要再机械加工,因此对陶瓷的机械加工性能要求更高。


技术实现要素:

[0004]
基于此,本发明的目的在于克服上述现有技术的不足之处而提供一种陶瓷材料。本发明以mg
a
si
b
ca
c
ti
d
o
(a+2b+c+2d)
为主晶相,通过复合掺杂mg
4
nbtao
9-al
2
o
3
等,获得的低介电常数微波陶瓷材料性能如下:相对介电常数在8~10之间,qf在80000~100000之间,谐振频率温度系数在0
±
10ppm/℃,且具有较宽烧结工艺窗口和良好机械加工性能。
[0005]
为实现上述目的,本发明所采取的技术方案为:一种陶瓷材料,所述陶瓷材料以mg
a
si
b
ca
c
ti
d
o
(a+2b+c+2d)
为主晶相,并复合掺杂有mg
4
nbtao
9
和al
2
o
3

[0006]
优选地,所述陶瓷材料的化学通式如下:{mg
a
si
b
ca
c
ti
d
o
(a+2b+c+2d)
}-e mg
4
nbtao
9-f al
2
o
3-g r
x
o,所述r
x
o为la
2
o
3
、ceo
2
、mno
2
中的一种;其中,a=2.00~2.16,b=0.90~1.10,c=0.10~0.20,d=0.10~0.20,e=0.03~0.20,f=0.03~0.15,g=0.01~0.10。
[0007]
优选地,所述陶瓷材料的制备原料的纯度不小于99.8%。
[0008]
同时,本发明还公开一种所述陶瓷材料的制备方法,包括如下步骤:
[0009]
(1)主晶相mg
a
si
b
ca
c
ti
d
o
(a+2b+c+2d)
的制备:按照主晶相化学计量比称取原料mgo、
sio
2
、caco
3
、tio
2
,将称量好的原料倒入球磨罐中,加入氧化锆球和去离子水,球磨4~6h,取出、烘干,将烘干后的粉末在1150~1250℃下煅烧1~3h,冷却至室温,得到主晶相粉体;
[0010]
(2)副料mg
4
nbtao
9
的制备:按照副料化学计量比称取原料,将称量好的原料倒入球磨罐中,加入氧化锆球和去离子水,行星球磨4~6h,取出、烘干,将烘干后的粉末在1000-1100℃下煅烧1~3h,冷却至室温,得到副料粉体;
[0011]
(3)将上述预先合成好的主晶相粉体、副料粉体与al
2
o
3
粉及r
x
o粉倒入球磨罐中进行二次球磨2~4小时,出料、烘干、过筛,得到陶瓷材料。
[0012]
优选地,所述步骤(1)、(2)、(3)中,研磨料、球、去离子水的重量比为:研磨料:球:去离子水=1:4:1.5。
[0013]
优选地,所述步骤(1)、(2)、(3)中,烘干的温度为150~200℃。
[0014]
优选地,所述步骤(3)中,过筛为过40目筛。
[0015]
此外,本发明还公开一种微波介质陶瓷材料,由上述陶瓷材料制备所得。
[0016]
进一步地,本发明还公开了上述的微波介质陶瓷材料的制备方法,所述方法为:在上述陶瓷材料中,添加聚乙烯醇溶液进行造粒并压制成圆柱状块体,在450~550℃下保温2~3小时,然后在1250~1350℃下烧结2~3小时,得到微波介质陶瓷材料。
[0017]
优选地,聚乙烯醇溶液,聚乙烯醇的质量百分含量为10~15wt%;将造粒好的粉料在10~15mpa压力下干压成型成圆柱状块体。
[0018]
相对于现有技术,本发明的有益效果为:
[0019]
本发明以mg
a
si
b
ca
c
ti
d
o
(a+2b+c+2d)
为基础配方,通过复合掺杂mg
4
nbtao
9-al
2
o
3
等,获得的低介电常数微波陶瓷材料性能如下:相对介电常数在8~10之间,qf在80000~100000之间,谐振频率温度系数在0
±
10ppm/℃;且具有较宽烧结工艺窗口和良好机械加工性能。
[0020]
本发明添加al
2
o
3
,因为al
2
o
3
的qf高(约为680000),可大幅提升材料的qf,克服原配方体系qf低的缺点;又因为al
2
o
3
有良好的机械加工性能,因此能有效提高陶瓷的整体机械加工性能,利于用此材料制备各种异型陶瓷件;但al
2
o
3
本身的烧结温度很高,烧温在1500℃以上,添加后会导致陶瓷的烧结温度升高,导致生产成本提高、材料烧结稳定性下降。因此本发明又添加了mg
4
nbtao
9
,因为mg
4
nbtao
9
的烧结温度在1100℃左右,能有效拉低烧结的下限温度,同时拓宽了温度工艺范围,将通常烧温由1350~1450℃范围降低到1250~1350℃。又由于mg
4
nbtao
9
的qf值(约为280000)也是非常高,在降低烧温的同时,还能提高陶瓷材料的qf值。
具体实施方式
[0021]
为更好的说明本发明的目的、技术方案和优点,下面将结合具体实施例对本发明作进一步说明。
[0022]
本发明设置实施例1~15,具体实施例1~15中的成分及性能分析如表1所示;此处仅以实施例1为例,对其制备过程进行具体说明,其他实施例同实施例1。
[0023]
实施例1
[0024]
本实施例陶瓷材料的化学通式为:{mg
a
si
b
ca
c
ti
d
o
(a+2b+c+2d)
}(主晶相)-emg
4
nbtao
9
(副料)-fal
2
o
3-gr
x
o(r
x
o为la
2
o
3
、ceo
2
、mno
2
中的一种),取a=2.00、b=1、c=0.2、d=0.2、e=0.05、f=0.05、g=0.01。
[0025]
本实施例微波介质陶瓷材料的制备过程如下:
[0026]
(1)主晶相mg
a
si
b
ca
c
ti
d
o
(a+2b+c+2d)
的制备:选择纯度为99.8%的原料mgo、sio
2
、caco
3
、tio
2
,根据主晶相化学计量比例,即选取a=2.00,b=1.0,c=0.20,d=0.20,首先计算所需主晶相原料的质量;将准确称量的各原料分别装入球磨罐内;加入纯水和氧化锆磨球,三者的重量比为:料:球:纯水=1:4:1.5;球磨4小时,混合均匀后出料,将其在200℃下烘干,过40目筛网,再在1200℃下煅烧3小时;
[0027]
(2)副料mg
4
nbtao
9
的制备:选择纯度为99.8%的原料mgo、nb
2
o
5
、ta
2
o
5
,三者按化学计量比8:1:1计算副料原料的质量,将准确称量的各原料分别装入球磨罐内;加入纯水和氧化锆磨球,三者的重量比为:料:球:纯水=1:4:1.5;球磨4小时,混合均匀后出料,将其在200℃下烘干,过40目筛网,再在1100℃下煅烧3小时;
[0028]
(3)按化学通式{mg
a
si
b
ca
c
ti
d
o
(a+2b+c+2d)
}(主晶相)-emg
4
nbtao
9
(副料)-fal
2
o
3-gr
x
o(r
x
o为la
2
o
3
)计算各原料主晶相、副料、al
2
o
3
、la
2
o
3
的质量,取主晶相1mol,e=0.05,f=0.05,g=0.01,添加剂la
2
o
3
、al
2
o
3
、la
2
o
3
纯度为99.8%,将准确称量的各原料分别装入球磨罐内;加入纯水和氧化锆磨球,三者的重量比为:料:球:纯水=1:4:1.5;球磨4小时,混合均匀后出料,将其在200℃下烘干,过40目筛网;
[0029]
(4)再将上述步骤(3)得到的粉体中加入12wt%的聚乙烯醇溶液进行造粒并过40目筛;将造粒好的粉料放入模具在12mpa压力下干压成型为的圆片;然后将成型好的圆片在500℃下保温3小时以除去粘结剂;最后以相同升温速率在1350℃下烧结3小时,最终制得所需要的新型微波介质陶瓷材料。
[0030]
采用网络分析仪(agilent 5071c)及相关配套夹具测试其微波介电性能,测试频率为9.7ghz,测试出该陶瓷材料的微波介电性能为:ε
r
=9.98,q
×
f=81564,τ
f
=+2.3ppm/℃。
[0031]
表1中为全部实施例配比,按表1的材料配方准确称量主晶相、副料、al
2
o
3
粉及添加剂r
x
o的分析纯原材料,按上述实施例1所述制备方法制得所需要的陶瓷材料烧结样品。采用网络分析仪(agilent 5071c)及相关配套夹具测试其微波介电性能,不同陶瓷配方、烧结温度及其对应微波介电性能测试结果如表1。
[0032]
表1各实施例材料组分及对应样品电性能
[0033][0034][0035]
从表1可以看出,本发明是以mg
a
si
b
ca
c
ti
d
o
(a+2b+c+2d)
为主晶相,通过复合掺杂mg
4
nbtao
9
、al
2
o
3
及r
x
o等获得的低介电常数微波陶瓷材料,其中所述的r
x
o为la
2
o
3
、ceo
2
、mno
2
中的一种。本发明的微波介质陶瓷材料的性能如下:相对介电常数在8~10之间,qf在80000~100000之间,谐振频率温度系数在0
±
10ppm/℃;且具有较宽烧结工艺窗口和良好机械加工性能。
[0036]
最后所应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

起点商标作为专业知识产权交易平台,可以帮助大家解决很多问题,如果大家想要了解更多知产交易信息请点击 【在线咨询】或添加微信 【19522093243】与客服一对一沟通,为大家解决相关问题。

此文章来源于网络,如有侵权,请联系删除

相关标签: 介电常数
tips