HI,欢迎来到起点商标网!
24小时服务QQ:2880605093

一种GaSe纳米材料、液相剥离方法及其应用与流程

2021-01-30 17:01:02|322|起点商标网
一种GaSe纳米材料、液相剥离方法及其应用与流程
一种gase纳米材料、液相剥离方法及其应用
技术领域
[0001]
本发明属于二维材料领域,是一种gase纳米材料、液相剥离方法及其应用。


背景技术:

[0002]
iii-vi族硫族化物(mx;m=ga,in;x=s,se,te)是一种新型的半导体层状二维(2d)材料。硒化镓(gase)是这种新型半导体层状化合物的一个代表性化合物。硒化镓是一种p型材料,且晶体显示层状六方结构。硒化镓具有强的面内共价键和弱的面外范德华相互作用、较高载流子迁移率、合适的光学带隙、非线性光学性质和光响应特性,所以在太阳能电池、非线性光学、赫兹发生器、高速电子器件等领域有广阔的应用前景。
[0003]
多层的gase是直接带隙半导体(2.1ev),单层的gase是间接带隙半导体(3.0ev)。单层硒化镓还被预测具有用于太阳能水分解的合适的能带、优异的热电效应、出色的载流子迁移率、感光度和高感应能力。目前常用的制备gase纳米片的方法很多,湿法如水热法,制备方法简便,但质量低,材料的性能较差;机械剥离制备的gase纳米片结晶度高,但产率低,耗时严重;化学气相沉积(cvd)法非常昂贵,并且需要转移技术。分子束外延(mbe)法操作较为复杂,效率较低。因此,如何简便有效地制备gase纳米材料仍是值得研究人员探索的重要课题。


技术实现要素:

[0004]
针对现有液相剥离制备方法的缺陷和制备过程中时间长及设备要求高的问题,本发明公开一种gase纳米材料、液相剥离方法及其应用,包括将硒化镓和异丙酮混合得到混合溶液,将所述的混合溶液放置在水浴中,进行超声分散后得到初始分散液,向所述初始分散液中再加入异丙酮并放置在水浴中,分离取上清液并进行二次超声分散,分离取上清液干燥即得。
[0005]
进一步的,所述的初始分散液中硒化镓和异丙酮的质量比0.015~0.03。
[0006]
具体的,所述的再加入异丙酮的加入量与初始分散液中的异丙酮的加入量相同。
[0007]
进一步的,所述的超声分散的速度为8000~10000rpm。
[0008]
进一步的,所述的水浴温度为25~40℃。
[0009]
进一步的,所述的超声时间为2~4h。
[0010]
一种gase纳米材料,所述的gase纳米材料由本发明所述的gase纳米材料的液相剥离方法剥离得到。
[0011]
进一步的,所述的gase纳米材料的每层的厚度为1.2~8.8nm。
[0012]
本发明所述的gase纳米材料的液相剥离方法用于制备gase纳米材料。
[0013]
本发明的优点为:
[0014]
(1)本发明制备的gase纳米材料具备不同形貌厚度,包括:柳叶状gase与薄片gase,反应所得的上清液为浅黄色或透明色;反应所得纳米材料的厚度越薄,上清液的颜色越淡;超声温度越高,相同超声时间里所得gase纳米材料越薄,在40℃时所得二位薄片最
薄;液相剥离法制备gase纳米材料的方法所需设备简单,价格低廉可以根据需要选取适合的超声温度和离心转速进行材料的制备。
[0015]
(2)本发明在制备不同形貌厚度的gase纳米材料时,仅使用最简单传统的超声设备,通过对药品比例,超声温度和离心转速的调控即可实现,无需使用任何模板,工艺简单且成本低廉。
[0016]
(3)所制备的gase纳米材料形状清晰,分散均匀,产率较高,能够根据需要选取不同厚度纳米材料进行研究和应用。
附图说明
[0017]
图1为本发明中实施例1的光学照片;
[0018]
图2为本发明中实例例1的光学照片;
[0019]
图3为本发明中实施例2的光学照片;
[0020]
图4为本发明中实施例3的光学照片;
[0021]
图5为本发明中实施例4的光学照片;
[0022]
图6为本发明中实施例5的光学照片;
[0023]
图7为本发明中对比例1的光学照片;
[0024]
图8为本发明中对比例2的光学照片;
[0025]
图9为本发明中实施例1的raman图谱;
[0026]
图10为本发明中实施例1的raman图谱;
[0027]
图11为本发明中实施例2的raman图谱;
[0028]
图12为本发明中实施例3的raman图谱;
[0029]
图13为本发明中实施例4的raman图谱;
[0030]
图14为本发明中实施例5的raman图谱;
[0031]
图15为本发明中对比例1的raman图谱;
[0032]
图16为本发明中对比例2的raman图谱;
[0033]
图17为本发明中实施例1、实施例2、实施例3、实施例4、对比例1和对比例2的raman对比图谱;
[0034]
图18为本发明中实例例1的afm图谱;
[0035]
图19为本发明中实例例2的afm图谱;
[0036]
图20为本发明中实例例3的afm图谱;
[0037]
图21为本发明中实例例4的afm图谱;
[0038]
图22为本发明中实例例5的afm图谱;
[0039]
图23为本发明中对比例1的afm图谱;
[0040]
图24为本发明中对比例2的afm图谱;
[0041]
以下结合说明书附图和具体实施方式对本发明做具体说明。
具体实施方式
[0042]
本发明所制备的不同形貌厚度的gase纳米材料,使用传统的液相剥离方法,采取改变超声温度和离心转速根据需求制备不同厚度的gase纳米材料。其中,所用超声设备的
功率为300w,频率为40khz。
[0043]
gase颗粒状材料(99.995%gase,北京高德威金属科技开发有限公司)和ipa溶剂(99.7%ipa,天津市致远化学试剂有限公司)
[0044]
本发明的“液相剥离法”包括将硒化镓和异丙酮混合得到混合溶液,将所述的混合溶液放置在水浴中,进行超声分散后得到初始分散液,向所述初始分散液中再加入异丙酮并放置在水浴中,分离取上清液并进行二次超声分散,分离取上清液干燥即得。
[0045]
再加入异丙酮的加入量与初始分散液中的异丙酮的加入量相同中的加入量在实施例中可以是体积量。
[0046]
本发明主要采用液相剥离法,通过控制反应中的超声温度以及离心转速因素,获得了不同形貌厚度的gase纳米材料。在此过程中不需要提供任何模板,工艺简单、设备常见,耗时较短且成本低廉,制备出来的纳米片厚度可控,所制备的各种形貌厚度的gase纳米材料形状清晰,分散均匀,产率较高,能够根据需要选取不同厚度纳米片进行研究和应用,在光电探测器、场效应晶体管、太阳能电池、太阳能分解水的催化剂等方面具有广阔的应用前景。
[0047]
为了使本发明的目的及优点更加清楚明白,下面结合附图以及具体实施例对本发明进行进一步地说明,以下所描述的具体实例仅用来对本发明进行解释说明,并不用于限定本发明。
[0048]
实施例一:
[0049]
步骤一:准备50mg纯度为99.995%的gase。
[0050]
步骤二:称取2ml纯度为99.7%的ipa放入透明玻璃分配瓶中,将步骤一中称量好的gase加入ipa溶液中,并密封好玻璃瓶。
[0051]
步骤三:将密封好的玻璃瓶放置在功率300w,频率40khz的超声设备中水浴3~4h,将浴温保持在25℃,进行超声分散,超声分散的速度为8000~10000rpm,后得到初始分散液。
[0052]
步骤四:向初始分散液中再加入2mlipa异丙酮并放置在水浴中,以10000rpm的速度离心3min,分离出上清液待用。
[0053]
步骤五:将步骤四中分离出来的上清液放入功率300w,频率40khz的超声设备中水浴2h,将浴温保持在25℃,然后将分散液以10000rpm的速度离心3min,分离出上清液,干燥即得。
[0054]
实例一所使用的gase颗粒状材料的光学图谱如图1所示,所得的拉曼图谱如图9所示;
[0055]
所得的gase纳米材料的光学照片如图2所示,拉曼图谱如图10所示,afm图谱如图18所示;
[0056]
图1和图2说明所得产物的厚度较厚,形貌为不规则片状,且产量较多。
[0057]
图9、图10和图18说明所得产物为gase纳米材料且其单层厚度变薄为8.727nm,根据文献(唐路平.硒化镓纳米结构的cvd制备及其光电特性研究[d].)可判断其层数为8~9层,所得薄片堆积严重。
[0058]
实施例二:
[0059]
步骤一:与实施例一相同。
[0060]
步骤二:与实施例一相同。
[0061]
步骤三:将密封好的玻璃瓶放置在功率300w,频率40khz的超声设备中水浴3~4h,将浴温保持在35℃。
[0062]
步骤四:与实施例一相同。
[0063]
步骤五:将步骤四中分离出来的上清液放入功率300w,频率40khz的超声设备中水浴2h,将浴温保持在35℃,然后将分散液以10000rpm的速度离心3min,分离出上清液。
[0064]
反应所得的上清液颜色较实施例一更浅。
[0065]
实例二所得的gase纳米材料的光学照片如图3所示,拉曼图谱如图11所示,afm图谱如图19所示;图3说明所得产物的形貌为柳叶形,分布均匀。
[0066]
图11和图19说明所得产物的厚度更薄,单层厚度为3.561nm,根据文献可判断其层数为3~4层,层间堆积较实施例一减轻,但依旧较为严重。
[0067]
实施例三:
[0068]
步骤一:与实施例一相同。
[0069]
步骤二:与实施例一相同。
[0070]
步骤三:将密封好的玻璃瓶放置在功率300w,频率40khz的超声设备中水浴3~4h,将浴温保持在40℃。
[0071]
步骤四:称取2mlipa加入超声好的分散液中,然后将混合物以8000rpm的速度离心3min,分离出上清液待用。
[0072]
步骤五:将步骤四中分离出来的上清液放入功率300w,频率40khz的超声设备中水浴2h,将浴温保持在40℃,然后将分散液以8000rpm的速度离心3min,分离出上清液。
[0073]
反应所得的上清液颜色更浅接近透明。
[0074]
实例三所得的片状gase纳米材料的光学照片如图4所示,拉曼图谱如图12所示,afm图谱如图20所示。图4说明所得产物的形貌为片状,且更薄。图12和图20说明所得产物的厚度大概在4nm左右,根据文献可判断其层数为4层。
[0075]
实施例四
[0076]
步骤一:与实施例一相同。
[0077]
步骤二:与实施例一相同。
[0078]
步骤三:将密封好的玻璃瓶放置在功率300w,频率40khz的超声设备中水浴3~4h,将浴温保持在40℃。
[0079]
步骤四:称取2mlipa加入超声好的分散液中,然后将混合物以10000rpm的速度离心3min,分离出上清液待用。
[0080]
步骤五:将步骤四中分离出来的上清液放入功率300w,频率40khz的超声设备中水浴2h,将浴温保持在40℃,然后将分散液以10000rpm的速度离心3min,分离出上清液。
[0081]
反应所得的上清液颜色更浅接近透明。
[0082]
实例四所得的片状gase纳米材料的光学照片如图5所示,拉曼图谱如图13所示,afm图谱如图21所示。图5说明所得产物的形貌为片状,且更薄。图13和图21说明所得产物的厚度为1.218nm,根据文献可判断其层数为1~2层。
[0083]
实施例五:
[0084]
步骤一:准备25mg纯度为99.995%的gase。
[0085]
步骤二:与实施例一相同。
[0086]
步骤三:与实施例四相同。
[0087]
步骤四:与实施例四相同。
[0088]
步骤五:与实施例四相同。
[0089]
反应所得的上清液颜色接近透明。
[0090]
实例五所得的片状gase纳米材料的光学照片如图6所示,拉曼图谱如图14所示,afm图谱如图22所示。图5说明所得产物的形貌为片状,且较薄,但产量较实施例四较少。图14和图22说明所得产物的厚度为2.827nm,根据文献可判断其层数为3~4层。
[0091]
实施例六:
[0092]
本实施例中初始分散液中硒化镓和异丙酮的质量比分别为0.015、0.018、0.02、0.025、0.03。
[0093]
对比例一
[0094]
步骤一:与实施例一相同。
[0095]
步骤二:与实施例一相同。
[0096]
步骤三:将密封好的玻璃瓶放置在功率300w,频率40khz的超声设备中水浴3~4h,将浴温保持在40℃。
[0097]
步骤四:称取2mlipa加入超声好的分散液中,然后将混合物以12000rpm的速度离心3min,分离出上清液待用。
[0098]
步骤五:将步骤四中分离出来的上清液放入功率300w,频率40khz的超声设备中水浴2h,将浴温保持在40℃,然后将分散液以12000rpm的速度离心3min,分离出上清液。
[0099]
反应所得的上清液颜色更浅接近透明。
[0100]
实例四所得的片状gase纳米材料的光学照片如图7所示,拉曼图谱如图15所示,afm图谱如图23所示。图7说明所得产物的形貌为片状,虽然薄但是所得产物堆积严重。图15和图23说明所得产物的厚度为3.202nm,根据文献可判断其层数为3~4层。
[0101]
对比例二
[0102]
步骤一:与实施例一相同。
[0103]
步骤二:与实施例一相同。
[0104]
步骤三:将密封好的玻璃瓶放置在功率300w,频率40khz的超声设备中水浴3~4h,将浴温保持在45℃。
[0105]
步骤四:称取2mlipa加入超声好的分散液中,然后将混合物以10000rpm的速度离心3min,分离出上清液待用。
[0106]
步骤五:将步骤四中分离出来的上清液放入功率300w,频率40khz的超声设备中水浴2h,将浴温保持在45℃,然后将分散液以10000rpm的速度离心3min,分离出上清液。
[0107]
反应所得的上清液颜色更浅接近透明。
[0108]
实例四所得的片状gase纳米材料的光学照片如图8所示,拉曼图谱如图16所示,afm图谱如图24所示。图8说明所得产物的形貌为片状,但相比40℃时产物非常少。图16和图24说明所得产物的厚度为3.7nm左右,根据文献可判断其层数为4~5层。相比40℃时反而变厚了。
[0109]
对比例三
[0110]
本对比例中初始分散液中硒化镓和异丙酮的质量比分别为0.01。
[0111]
对比例四
[0112]
本对比例中初始分散液中硒化镓和异丙酮的质量比分别为0.05。
[0113]
对比例四
[0114]
本对比例中超声分散的速度为7500rpm。
[0115]
综上所述,本发明涉及不同形貌厚度gase纳米材料的制备方法,所采用的液相剥离方法制备过程中不需要任何模板,工艺简单且成本低廉,便于制作材料。
[0116]
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

起点商标作为专业知识产权交易平台,可以帮助大家解决很多问题,如果大家想要了解更多知产交易信息请点击 【在线咨询】或添加微信 【19522093243】与客服一对一沟通,为大家解决相关问题。

此文章来源于网络,如有侵权,请联系删除

相关标签: 离心分离
tips