HI,欢迎来到起点商标网!
24小时服务QQ:2880605093

一种聚酰亚胺石墨膜的制备方法与流程

2021-01-30 17:01:17|316|起点商标网

[0001]
本发明涉及聚酰亚胺石墨膜技术领域,尤其涉及一种聚酰亚胺石墨膜的制备方法。


背景技术:

[0002]
经研究表明,聚酰亚胺(polyimide,pi)薄膜可以在碳化过程中不融化,保持薄膜形态,且经过高温石墨化处理后,能获得接近于单晶石墨结构的高定向石墨膜。当加热到500℃-700℃时,pi膜中的杂原子氧、氮、氢等进行脱离,含碳量迅速增加,pi膜发生碳化,分子处于无定型状态;当加热到约1000℃时,分子内官能团进行重组,形成连续的芳杂环多环化合物,且随着温度的升高,类石墨结构的六角碳网层面形成并逐渐生长;当加热到2800~3000℃时,层状结构越平整有序,类石墨结晶进一步向理想石墨单晶无限趋近,碳化膜转变为高度有序石墨结构,高定向石墨膜具有优良的导热性能,目前常用作高性能薄膜导热材料应用于微电子封装、基层领域等多个领域。
[0003]
然而,聚酰亚胺石墨膜的石墨化程度受pi膜厚度的影响较大,pi膜厚度越大,其类石墨晶体生长发育越困难,层片择优取向程度越低,结晶度和石墨化程度越低,甚至不适合用作导热膜。因而,现有工艺中,仅限于采用厚度90μm以下的聚酰亚胺薄膜来制备聚酰亚胺石墨膜,才能获得具有良好导热性能的聚酰亚胺石墨膜。所以,聚酰亚胺石墨膜厚度问题严重的限制石墨膜应用范围。
[0004]
中国专利cn111017921a提供了一种制得厚度可控、石墨化程度高的聚酰亚胺石墨膜,可以解决现有工艺中聚酰亚胺石墨膜的石墨晶体生长受pi膜厚度制约的问题。该薄膜通过高速剪切分散和研磨分散将碳纳米管分散在聚酰胺酸溶液中,在经过成膜石墨化等过程制得。但是碳纳米管存在成本较高,单纯的机械搅拌导致分散性差等问题,都为大规模的生产带来困难。


技术实现要素:

[0005]
基于背景技术存在的技术问题,本发明提出了一种聚酰亚胺石墨膜的制备方法。
[0006]
本发明提出的一种聚酰亚胺石墨膜的制备方法,包括以下步骤:
[0007]
s1、将微碳化植物纤维分散在溶剂中,在惰性气氛下加入二胺、二酐进行聚合反应,得到含微碳化植物纤维的聚酰胺酸溶液;
[0008]
s2、将所述含微碳化植物纤维的聚酰胺酸溶液经过高速剪切分散和/或研磨分散后,在基体上成膜,干燥后,进行亚胺化处理,得到含微碳化植物纤维的聚酰亚胺薄膜;
[0009]
s3、将所述含微碳化植物纤维的聚酰亚胺薄膜依次进行碳化处理和石墨化处理,得到聚酰亚胺石墨膜。
[0010]
优选地,所述微碳化植物纤维的制备方法为:将植物纤维进行短切,然后在惰性气氛下,于150-200℃进行微碳化处理,再研磨至一定长度,即可;优选地,所述微碳化处理的时间为5-10h;优选地,所述微碳化植物纤维的长度为50-1000μm。
[0011]
优选地,所述植物纤维为秸秆粉、稻壳粉、木粉、竹粉、黄麻纤维、亚麻纤维、苎麻纤维、柳絮、棉花中的至少一种。
[0012]
优选地,所述微碳化植物纤维的质量为二胺、二酐质量之和的5-15%。
[0013]
优选地,所述二胺、二酐的摩尔比为1:(1-1.05)。
[0014]
优选地,所述二胺、二酐的质量之和与溶剂的体积之比为(1-3)g:10ml。
[0015]
优选地,所述二酐为1,2,4,5-均苯四甲酸二酐、3,3

,4,4
’-
二苯酮四酸二酐、4,4
’-
联苯醚酐、3,3',4,4'-联苯二酐、3,4,3

,4
′-
二苯硫醚四甲酸二酐、3,4,3

,4
′-
三苯双醚四甲酸二酐、4,4
′-
(六氟亚异丙基)-二酞酸酐、3,4,3

,4
′-
二苯甲酮四甲酸二酐、3,4,3

,4
′-
二苯醚二酐中的至少一种。
[0016]
优选地,所述二胺为4-环己二胺,4,4'-二氨基二环己基甲烷,1,4-双(4-氨基苯氧基)苯、2,2'-双(三氟甲基)-4,4'-二氨基苯基醚、9,9-双(4-氨基苯基)芴、2-(4-氨基苯基)-5-氨基苯并恶唑、间苯二胺、4,4'-二氨基二苯砜、1,4-双(4-氨基苯氧基)苯、4,4'-二氨基苯酰替苯胺、3-三氟甲基间苯二胺、2-(4-氨基苯基)-5-氨基苯并恶唑中的至少一种。
[0017]
优选地,所述溶剂为非质子极性溶剂,例如n,n-二甲基甲酰胺、n,n-二甲基乙酰胺、n-甲基吡咯烷酮、二甲基亚砜、四氢呋喃中的至少一种。
[0018]
优选地,所述步骤s2中,亚胺化处理的具体方法为:依次在140-160℃保温30-50min,在220-260℃保温30-50min,在300-320℃保温30-50min,在340-360℃保温30-50min。
[0019]
优选地,所述步骤s3中,碳化处理的的具体方法为:以2-4℃/min的升温速率升温至950-1100℃,保温1.5-2.5h。
[0020]
优选地,所述步骤s3中,石墨化处理的具体方法为:以200-300℃的梯度升温至2900-3200℃,每个梯度保温0.5-1.5h。
[0021]
优选地,所述含微碳化植物纤维的聚酰亚胺薄膜的厚度≥80微米。
[0022]
优选地,所述步骤s2中,含微碳化植物纤维的聚酰胺酸溶液经过高速剪切分散和/或研磨分散后,先进行消泡处理,再在基体上成膜。
[0023]
一种聚酰亚胺石墨膜,由所述的制备方法制得。
[0024]
本发明的有益效果如下:
[0025]
本发明先将植物纤维短切,通过微碳化预处理后分散于有机溶剂中,然后后加入二胺和二酐进行原位聚合反应,得到含微碳化植物纤维的聚酰胺酸溶液,再进行亚胺化处理,得到含微碳化植物纤维的聚酰亚胺薄膜,最后经过碳化、石墨化得到聚酰亚胺石墨膜。植物纤维经过微碳化预处理后,表面产生较多的含氧官能团,这些官能团为后续的二胺二酐原位聚合提供了附着的活性位点,使得聚酰胺酸可以紧密的附着于微碳化植物纤维,这有利于微碳化植物纤维均匀分散于聚酰亚胺薄膜中,进而使得后续形成的碳纳米管均匀分散于石墨膜中;同时,在聚酰胺酸亚胺化和聚酰亚胺薄膜石墨化的过程中,植物纤维也相应的碳化而形成碳纳米管,形成的碳纳米管表面具有完好的离域π键,该离域π键对聚酰亚胺薄膜在碳化过程中形成的芳杂环多环化合物具有吸附作用,可诱导芳杂环多环化合物聚集在碳纳米管周围,促进石墨化过程中形成的六角碳层沿着碳纳米管的表面定向生长,提高了石墨晶体的六角碳骨架定向排列的效果,降低了聚酰亚胺薄膜厚度对石墨晶体生长发育的限制,并同时降低了石墨化的能量,有利于提升聚酰亚胺石墨膜的石墨化程度,从而制得
厚度可控、石墨化程度高、导热性能好的聚酰亚胺石墨膜。本发明将价格低廉的微碳化植物纤维作为原位聚合反应载体直接添加进聚酰亚胺合成体系中,以含微碳化植物纤维的聚酰亚胺薄膜直接石墨化形成含碳纳米管的聚酰亚胺石墨膜,不仅能提升石墨膜的性能,而且大大降低了石墨膜的生产成本,为生产高性能石墨膜提供了绿色、低成本的新方法,制得的石墨膜还具有制备方法操作简便、使用填料成本低廉、绿色环保等优点,是作为微电子器件包装散热用途的理想材料。
具体实施方式
[0026]
下面,通过具体实施例对本发明的技术方案进行详细说明。
[0027]
实施例1
[0028]
一种聚酰亚胺石墨膜的制备方法,包括以下步骤:
[0029]
s1、将微碳化植物纤维分散在n,n-二甲基乙酰胺中,在氮气气氛下加入4,4'-二氨基二苯醚、1,2,4,5-苯四甲酸酐,在10℃搅拌反应4h,得到含微碳化植物纤维的聚酰胺酸溶液,其中4,4'-二氨基二苯醚、1,2,4,5-苯四甲酸酐的摩尔比为1:1,微碳化植物纤维的质量为4,4'-二氨基二苯醚、1,2,4,5-苯四甲酸酐质量之和的15%,4,4'-二氨基二苯醚、1,2,4,5-苯四甲酸酐的质量之和与n,n-二甲基乙酰胺的体积之比为2g:10ml;
[0030]
s2、将含微碳化植物纤维的聚酰胺酸溶液经过高剪切力均质机高速剪切分散和三辊研磨机研磨分散后,置于真空干燥箱中消泡1h,然后涂布在玻璃基板上成膜,置于烘箱中干燥后,按下述工艺热亚胺化:依次在150℃保温40min,在240℃保温40min,在310℃保温40min,在350℃保温40min,冷却后,得到含微碳化植物纤维的聚酰亚胺薄膜,薄膜的厚度为100μm;
[0031]
s3、将含微碳化植物纤维的聚酰亚胺薄膜以4℃/min的升温速率升温至1000℃,保温2h,然后以300℃的梯度升温至3000℃,每个梯度保温1h,得到聚酰亚胺石墨膜。
[0032]
其中,微碳化植物纤维的制备方法为:将柳絮纤维进行短切,然后在氮气气氛下,于200℃微碳化处理6h,再研磨至长度为50μm,即可。
[0033]
实施例2
[0034]
一种聚酰亚胺石墨膜的制备方法,包括以下步骤:
[0035]
s1、将微碳化植物纤维分散在n,n-二甲基乙酰胺中,在氮气气氛下加入4,4'-二氨基二苯醚、1,2,4,5-苯四甲酸酐进行聚合反应,得到含微碳化植物纤维的聚酰胺酸溶液,其中4,4'-二氨基二苯醚、1,2,4,5-苯四甲酸酐的摩尔比为1:1.03,微碳化植物纤维的质量为4,4'-二氨基二苯醚、1,2,4,5-苯四甲酸酐质量之和的10%,4,4'-二氨基二苯醚、1,2,4,5-苯四甲酸酐的质量之和与n,n-二甲基乙酰胺的体积之比为1g:10ml;
[0036]
s2、将含微碳化植物纤维的聚酰胺酸溶液经过高剪切力均质机高速剪切分散和三辊研磨机研磨分散后,置于真空干燥箱中消泡1h,然后涂布在玻璃基板上成膜,置于烘箱中干燥后,按下述工艺热亚胺化:依次在140℃保温50min,在220℃保温50min,在300℃保温50min,在340℃保温50min,得到含微碳化植物纤维的聚酰亚胺薄膜,薄膜的厚度为100μm;
[0037]
s3、将含微碳化植物纤维的聚酰亚胺薄膜以2℃/min的升温速率升温至950℃,保温2.5h,然后以250℃的梯度升温至3200℃,每个梯度保温0.5h,得到聚酰亚胺石墨膜。
[0038]
其中,微碳化植物纤维的制备方法为:将亚麻纤维进行短切,然后在惰性气氛下,
于150℃微碳化处理10h,再研磨至长度为50μm,即可。
[0039]
实施例3
[0040]
一种聚酰亚胺石墨膜的制备方法,包括以下步骤:
[0041]
s1、将微碳化植物纤维分散在n,n-二甲基乙酰胺中,在氮气气氛下加入4,4'-二氨基二苯醚、1,2,4,5-苯四甲酸酐进行聚合反应,得到含微碳化植物纤维的聚酰胺酸溶液,其中4,4'-二氨基二苯醚、1,2,4,5-苯四甲酸酐的摩尔比为1:1.05,微碳化植物纤维的质量为4,4'-二氨基二苯醚、1,2,4,5-苯四甲酸酐质量之和的5%,4,4'-二氨基二苯醚、1,2,4,5-苯四甲酸酐的质量之和与n,n-二甲基乙酰胺的体积之比为3g:10ml;
[0042]
s2、将含微碳化植物纤维的聚酰胺酸溶液经过高剪切力均质机高速剪切分散和三辊研磨机研磨分散后,置于真空干燥箱中消泡1h,然后涂布在玻璃基板上成膜,置于烘箱中干燥后,按下述工艺热亚胺化:依次在160℃保温30min,在260℃保温30min,在320℃保温30min,在360℃保温30min,得到含微碳化植物纤维的聚酰亚胺薄膜,薄膜的厚度为100μm;
[0043]
s3、将含微碳化植物纤维的聚酰亚胺薄膜以3℃/min的升温速率升温至1100℃,保温1.5h,然后以200℃的梯度升温至2900℃,每个梯度保温1.5h,得到聚酰亚胺石墨膜。
[0044]
其中,微碳化植物纤维的制备方法为:将棉花纤维进行短切,然后在惰性气氛下,于180℃微碳化处理5h,再研磨至长度为50μm,即可。
[0045]
对比例1
[0046]
一种聚酰亚胺石墨膜的制备方法,包括以下步骤:
[0047]
s1、在氮气气氛下,将4,4'-二氨基二苯醚、1,2,4,5-苯四甲酸酐加入n,n-二甲基乙酰胺中,在10℃搅拌反应4h,得到聚酰胺酸溶液,其中4,4'-二氨基二苯醚、1,2,4,5-苯四甲酸酐的摩尔比为1:1,4,4'-二氨基二苯醚、1,2,4,5-苯四甲酸酐的质量之和与n,n-二甲基乙酰胺的体积之比为2g:10ml;
[0048]
s2、将聚酰胺酸溶液置于真空干燥箱中消泡1h,然后涂布在玻璃基板上成膜,置于烘箱中干燥后,按下述工艺热亚胺化:依次在150℃保温40min,在240℃保温40min,在310℃保温40min,在350℃保温40min,冷却后,得到聚酰亚胺薄膜,薄膜的厚度为100μm;
[0049]
s3、将聚酰亚胺薄膜以4℃/min的升温速率升温至1000℃,保温2h,然后以300℃的梯度升温至3000℃,每个梯度保温1h,得到聚酰亚胺石墨膜。
[0050]
将实施例1-3以及对比例1制得的聚酰亚胺石墨膜进行性能测试,结果如表1所示:
[0051]
表1聚酰亚胺石墨膜的性能
[0052] 厚度(μm)收缩率(%)热导率(w/m.k)测试方法gb/t13542gb/t13542.2-2009astm-d696实施例19191400实施例289111600实施例39371700对比例167331050
[0053]
从上表可以看出,本发明制得的聚酰亚胺石墨膜与对比例制得的聚酰亚胺石墨膜相比,其热导率更高,厚度大,收缩率小。其原因就是在聚合反应期间添加微碳化植物纤维,使得微碳化植物纤维可以均匀分散到聚酰胺酸体系中,而后,在聚酰亚胺膜石墨化时植物纤维也碳化形成碳纳米管,为聚酰亚胺薄膜石墨化过程中提供碳骨架支撑,使得聚酰亚胺
石墨膜可以克服厚度对类石墨晶体生长发育的限制,制得厚度可控、石墨化程度高、导热性能好的聚酰亚胺石墨膜。
[0054]
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

起点商标作为专业知识产权交易平台,可以帮助大家解决很多问题,如果大家想要了解更多知产交易信息请点击 【在线咨询】或添加微信 【19522093243】与客服一对一沟通,为大家解决相关问题。

此文章来源于网络,如有侵权,请联系删除

tips