一种微弧氧化CrAlN涂层的复合制备方法与流程
本发明属于表面改性技术领域,具体涉及一种微弧氧化craln涂层的复合制备方法。
背景技术:
表面改性技术是当前材料领域的重要发展方向之一。铬与铝及其化合物涂层因具有较高的耐蚀性,良好的耐磨性和硬度已成为研究热点。
磁控溅射技术是一种相对成熟的表面改性技术,它具有溅射温升低、溅射速率高、涂层均匀以及附着力好等优点而备受青睐,但是该技术制备的涂层是通过粒子堆积的方式生长,涂层带有空隙的柱状晶,易形成间隙腐蚀,涂层的耐蚀性不高。虽然提高基体偏压可有效控制柱状晶的生长,提高涂层的致密度,但过高的偏压则会导致涂层的中内应力过大,破坏膜基结合性能。
微弧氧化(mircroarcoxidation,mao)又称等离子体微弧氧化(plasmaelectrolyticoxidation,peo)是由阳极氧化发展而来的一种表面处理技术,是一种可以直接在铝、镁、钛等阀金属及其合金表面原位生长陶瓷膜的新技术,通过该技术获得的陶瓷材料具有优良的耐蚀性以及优良的硬度,耐磨性等力学性能。该方法将阀金属(或相关合金)浸入电解液中,通过施加高电压使阀金属基体表面与电解液之间形成高电场,形成火花放电,释放大量的热,并在基体表面原位生长出组织均匀、致密的氧化涂层,提高涂层的耐蚀和耐磨性能。但由于微弧氧化涂层的生长方式是通过熔融液滴在固体表面生长,涂层与基体的结合力相对较差,易脱落。此外,微弧氧化的基材只适用于阀金属,适用范围窄。
本发明提出微弧氧化结合磁控溅射技术制备复合craln涂层,首先通过磁控溅射技术在基体表面沉积一层均匀的结合力高的craln涂层,再通过微弧氧化用氧替代氮原子,形成al2o3、cr2o3相,进一步增加涂层的致密度,使涂层具备高抗磨蚀性能。本发明可有效避免仅用磁控溅射沉积氧化物涂层时,高氧通量带来的靶中毒问题;仅用微弧氧化涂层与基体的结合力相对较差,易脱落,适用范围窄等问题。
技术实现要素:
本发明的目的是提供一种微弧氧化craln涂层的复合制备方法,解决仅用磁控溅射沉积氧化物涂层时,高氧通量带来的靶中毒,及柱状晶生长方式带来的耐蚀性差;仅用微弧氧化制备的涂层与基体结合力相对较差,易脱落,适用范围窄等问题,制备出高耐腐蚀性和耐磨性的涂层,且应用范围更广。
为实现上述目的,本发明通过下述技术方案实现。
本发明制备的复合涂层由三层组成,分别是200~300nm的纯cr过渡层,2~5μm的craln中间层和300~500nm的al2o3和cr2o3的密封层,具体包括如下步骤:
(1)工件表面清洗
将工件完全浸渍于99.5%的丙酮溶液中,将装有丙酮和工件的容器放入超声波清洗仪,清洗30~50min,去除所述工件表面污渍,取出清洗后的工件用压缩空气吹干表面后置于干燥箱中,干燥温度100~200℃,干燥时间10~20min;
(2)工件离子溅射清洗
将经步骤(1)处理后的工件悬挂于等离子体增强磁控溅射系统真空室的工件架上,启动真空系统,待真空室的本底真空度低于3×10-3pa,开启加热管对真空室进行加热:先加热至150~200℃,待真空度低于3×10-3pa,再加热到300~400℃,待真空度低于3×10-3pa;通入140~200sccm氩气5~10min,去除真空室内的残余气体;向所述的等离子体增强磁控溅射系统真空室通入ar和h2的混合气体,二者的体积比为5:4,打开灯丝电源,灯丝电流调节为20~30a;开启基体偏压电源,设定负偏压为-100~-400v,对工件进行离子溅射清洗10~45min;
(3)等离子体增强磁控溅射系统靶清洗
开启等离子体增强磁控溅射系统的靶电源,设定靶功率为1~5kw,频率50~60khz,占空比50~80%,清洗靶表面,至靶电压稳定在300~400v;
(4)工件沉积纯cr层和craln涂层
关闭氢气,调节氩气流量使得真空室压力保持在0.5~1.5pa,基体偏压调节为-50~-100v,打开靶前挡板,开始沉积纯铬过渡层10~30min;通入氮气,流量设定为50~100sccm,开始沉积craln涂层,沉积时间为2~5h;关闭所有电源及气体,所述的等离子体增强磁控溅射系统真空室冷却至室温,取出工件;
(5)微弧氧化形成al2o3、cr2o3相
以1l水里面加入11g的na2sio3和1.7g的koh配置成的水溶液为电解质,采用微弧氧化设备的水冷却系统将电解液保持在40℃以下;将经过步骤(5)处理后的工件放入微弧氧化设备的实验槽中,作为阳极,316l不锈钢片为阴极,施加电压,以100v为步长,每增加100v,停留时间2min,最终电压增至500~1000v,频率500~800hz,占空比20~80%;之后采用恒流模式,电流设为5~10a,反应10~30min;取出工件用高压氮气吹干。
与现有技术相比,本发明的有益效果为:
(1)与仅采用磁控溅射技术制备的craln涂层相比,本发明采用微弧氧化处理磁控溅射技术制备的craln涂层,能够在craln涂层表面形成致密的氧化层,可有效消除craln涂层的柱状晶间隙,避免腐蚀液浸入基体,使涂层剥落,显著提高涂层的耐蚀性;同时形成的氧化层具有更高的硬度,能进一步提高工件表面的硬度和耐磨性;解决仅采用磁控溅射技术不易制备高含氧的氧化物涂层,靶容易中毒,涂层耐蚀性差等问题。
(2)与仅采用微弧氧化技术相比,本发明克服了微弧氧化制备的涂层不均匀,与基体结合力相对较差,易脱落,适用范围窄等问题。
(3)制备的复合craln涂层(低硬度的纯cr过渡层+较高硬度的craln支撑层+高硬度的al2o3和cr2o3的密封层)是硬度梯度过渡结构,提高了膜基结合力和涂层的承载能力。
(4)本发明适用性强。可根据基片的材质以及产品性能的具体要求调磁控溅射技术所获得的涂层的种类以及涂层的组织结构,调控微弧氧化的试验参数,同时也可以对涂层的材料进行择优选择,使获得的涂层符合具体的工程或机械制造的使用要求。
附图说明
图1是制备的涂层示意图;其中1-氧化层(al2o3+cr2o3),2-craln涂层,3-纯cr涂层,4-基体。
具体实施方式
下面将结合本发明实施例,对本发明的技术方案进行详细介绍。
(1)工件表面清洗
将工件完全浸渍于99.5%的丙酮溶液中,将装有丙酮和工件的容器放入超声波清洗仪,清洗30min,去除所述工件表面污渍,取出清洗后的工件用压缩空气吹干表面后置于干燥箱中,干燥温度100℃,干燥时间20min。
(2)工件离子溅射清洗
将经步骤(1)处理后的工件悬挂于等离子体增强磁控溅射系统真空室的工件架上,启动真空系统,待真空室的本底真空度低于3×10-3pa,开启加热管对真空室进行加热:先加热至200℃,待真空度低于3×10-3pa,再加热到400℃,待真空度低于3×10-3pa;通入200sccm氩气5min,去除真空室内的残余气体;向所述的等离子体增强磁控溅射系统真空室通入ar和h2的混合气体,二者的体积比为5:4,打开灯丝电源,灯丝电流调节为24a;开启基体偏压电源,设定负偏压为-300v,对工件进行离子溅射清洗30min。
(3)等离子体增强磁控溅射系统靶清洗
开启等离子体增强磁控溅射系统的靶电源,设定靶功率为3kw,频率60khz,占空比80%,清洗靶表面,至靶电压稳定在300v。
(4)工件沉积纯cr层和craln涂层
关闭氢气,调节氩气流量使得真空室压力保持在0.5pa,基体偏压调节为-50v,打开靶前挡板,开始沉积纯铬过渡层15min;通入氮气,流量设定为100sccm,开始沉积craln涂层,沉积时间为5h;关闭所有电源及气体,所述的等离子体增强磁控溅射系统真空室冷却至室温,取出工件。
(5)微弧氧化形成al2o3、cr2o3相
以1l水里面加入11g的na2sio3和1.7g的koh配置成的水溶液为电解质,采用微弧氧化设备的水冷却系统将电解液保持在40℃以下;将经过步骤(5)处理后的工件放入微弧氧化设备的实验槽中,作为阳极,316l不锈钢片为阴极,施加电压从100v开始依次增加到200v、300v、400v、500v,每段时间为2min,频率500hz,占空比20%。之后采用恒流模式,电流设为5a,反应10min。取出工件用高压氮气吹干。
本发明制备的复合涂层由三层组成,分别是200~300nm的纯cr过渡层,2~5μm的craln中间层和300~500nm的al2o3和cr2o3的密封层。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。
起点商标作为专业知识产权交易平台,可以帮助大家解决很多问题,如果大家想要了解更多知产交易信息请点击 【在线咨询】或添加微信 【19522093243】与客服一对一沟通,为大家解决相关问题。
此文章来源于网络,如有侵权,请联系删除