HI,欢迎来到起点商标网!
24小时服务QQ:2880605093

一种贝克曼梁弯沉仪自动采集装置的制作方法

2021-01-17 13:01:37|223|起点商标网
一种贝克曼梁弯沉仪自动采集装置的制作方法

本申请涉及路面路基弯沉测量领域,特别涉及一种贝克曼梁弯沉仪自动采集装置。



背景技术:

弯沉值是荷载对路基/路面作用前后,路基路面发生变形的大小。如果弯沉值过大,其变形也就越大,路面各层也就容易发生损坏。弯沉值作为一项重要的检测指标,反映了路面的整体强度质量。因此,精确测量出路面弯沉盆特征曲线,对于了解路面弯沉的变化规律、准确评价路面质量、客观估算路面寿命有着极其重要的作用。

目前,公路施工建设中主要采用贝克曼梁法测定路面路基回弹弯沉。该方法所采用的主要设备包括标准车和贝克曼梁,贝克曼梁在梁整体长度的三分之一处设立一个杠杆支点,将梁体分成较长的前臂和较短的后臂(即前、后臂长度比为2:1)。前臂与路基/路面接触,后臂上装有百分表机械式位移计。

在进行弯沉试验时,标准车缓缓前进,对路面施加载荷使路面变形,百分表随路面变形的增加而持续向前转动,当表针转动到最大值时,迅速读取初读数,标准车继续前进,百分表表针反向回转,待表针回转稳定后,再次读取最终读数。

然而,利用贝克曼梁弯沉仪进行测试时,存在以下不足:一、需4人完成贝克曼梁臂的搬运、百分表的安装调零以及测试数据的读取和记录,耗费的人力资源较多,人员劳动强度较高,工作效率较低;二、测试过程受人为因素影响较大,不能较好的保证测试结果准确性。



技术实现要素:

本申请的目的在于提供一种贝克曼梁弯沉仪自动采集装置,它能够对数据进行实时采集,提高现场检测效率,使测量结果更加准确可靠。

本申请的上述目的是通过以下技术方案得以实现的:

一种贝克曼梁弯沉仪自动采集装置,包括辅助采集车、贝克曼梁、信息监测系统;所述辅助采集车包括具有运输平台的架体、竖向滑动安装在架体上的托架、驱使托架沿高度方向往复位移的高度调节件、以及长度伸缩设置的安装架;所述托架端部位于架体外,所述贝克曼梁放置支撑于托架端部;所述信息监测系统包括位移传感器、测距传感器、微处理单元、显示单元及供电单元;所述位移传感器安装在安装架上,用于自动连续采集路面路基的回弹弯沉值数据;所述测距传感器安装在架体上,用于自动连续采集标准车与测点距离;所述微处理单元对位移传感器、测距传感器收集到的数据进行处理、显示、存储和输出;所述显示单元用于输出微处理单元处理后的数据;所述供电单元供电连接所述位移传感器、测距传感器、微处理单元、显示单元。

通过采用上述技术方案,贝克曼梁可直接搭放在托架端部,随辅助采集车一起转移至下一测点,不用再由四名工人搬运,有效解放劳动力,提高现场检测效率;而信息监测系统能够自动连续采集数据,实时的完整的将所需采集数据储存在微处理单元中,弥补了现有贝克曼梁测量方法中使用机械百分表只能检测单点弯沉值的不足,保证了所需数据的实时性,多点连续性,完整性及杜绝人工读数时可能产生的误差。

本申请进一步设置为:所述架体包括外形为矩形的框架、设置在框架边角的立杆以及运输平台,所述立杆竖直设置,其顶部与框架固接,底部与运输平台固接,所述运输平台底部安装有自锁万向轮。

通过采用上述技术方案,框架、立杆、运输平台组成的架体为托架和信息监测系统提供安装基础,以便实现贝克曼梁搬运和信息实时采集功能。

本申请进一步设置为:所述托架主要由两块交叉分布的直板组成,所述托架的端部与立杆滑动配合;所述高度调节件包括竖直转动安装在架体上的丝杠和安装在丝杠顶部的施力件,所述丝杠与托架螺纹连接。

通过采用上述技术方案,托架交叉设置,并与架体的立杆滑动配合,使得托架能够对贝克曼梁提供支撑的同时,还将架体内部分隔成若干三角区域,有效提高了架体的稳定性。利用丝杠驱使托架作升降往复运动,螺纹传动平稳快捷,使贝克曼梁在托架上放置的更加稳定。

本申请进一步设置为:所述安装架包括伸缩杆、将伸缩杆水平安装在运输平台上的安装座、及连接在伸缩杆活动端的夹持件,所述夹持件具有弹性夹口,所述位移传感器位于弹性夹口中。

本申请进一步设置为:所述伸缩杆活动端竖直固接有连接杆,所述夹持件包括滑动安装在连接杆上的滑套、和水平固接在滑套上的夹持板,所述弹性夹口设置在夹持板远离滑套的端部;所述滑套通过顶丝定位在连接杆上。

通过采用上述技术方案,位移传感器安装在弹性夹口中,利用伸缩杆实现长度方向调节,利用滑套与连接杆配合实现高度方向调节,以此实现位移传感器的精密调节安装。

本申请进一步设置为:所述安装架设置为两组,相对布置在运输平台两侧;两组安装架的伸缩杆上下错位设置。

通过采用上述技术方案,使辅助采集车同时对两侧的贝克曼梁进行测量,测得的数据可对比校正,提高测量的准确性。

本申请进一步设置为:所述信息监测系统还包括温度传感器,用于自动连续采集路面温度。

通过采用上述技术方案,处理数据时可参考现场温度因素,提高数据的准确性。

本申请进一步设置为:所述信息监测系统还包括增量编码器,增量编码器与微处理单元信号连接,用于对微处理单元收集处理得到的数据进行测点桩号设置、时间间隔设置、逻辑计算。

综上所述,本申请具有以下有益效果:通过为贝克曼梁配制辅助采集车,贝克曼梁可搭放在辅助采集车上同步转移;在辅助采集车上设置信息监测系统,以自动连续采集数据,实时的完整的将所需采集数据储存在微处理单元中,弥补了现有贝克曼梁测定路面路基回弹弯沉的测量方法中使用机械百分表只能检测单点弯沉值的不足,保证了所需数据的实时性,多点连续性,完整性及杜绝人工读数时可能产生的误差。

附图说明

图1是实施例中贝克曼梁弯沉仪自动采集装置的结构示意图;

图2是实施例中辅助采集车的结构示意图;

图3是实施例中信息监测系统的示意性框图。

图中,1、辅助采集车;11、运输平台;12、立杆;13、框架;14、万向轮;2、贝克曼梁;3、信息监测系统;31、位移传感器;32、测距传感器;33、温度传感器;34、微处理单元;35、增量编码器;36、显示单元;37、供电单元;4、托架;5、高度调节件;51、丝杠;52、施力件;6、安装架;61、伸缩杆;611、内杆;612、外管;62、安装座;63、夹持件;631、滑套;632、夹持板;633、弹性夹口;64、连接杆。

具体实施方式

以下结合附图对本申请作进一步详细说明。

一种贝克曼梁弯沉仪自动采集装置,如图1所示,包括辅助采集车1、贝克曼梁2和信息监测系统3。其中贝克曼梁2可搭放在辅助采集车1上,通过辅助采集车1进行转移;信息监测系统3安装在辅助采集车1上,对路面弯沉值相关数据实时测定记录。

如图1、图2所示,辅助采集车1包括运输平台11,运输平台11的顶部竖直固接有四个呈矩形分布的立杆12,立杆12的顶部水平固接有矩形框架13,框架13、立杆12与运输平台11组成了辅助采集车1的架体;运输平台11的底部安装有自锁万向轮14,以便架体转移或定位。

辅助采集车1的架体中水平布置有托架4和对托架4高度进行调节的高度调节件5。其中托架4的外形呈x形,由两块交叉分布的直板拼接而成;托架4自身交叉重叠的部分位于运输平台11的中心处,其端部伸出架体外,用于悬挂支撑贝克曼梁2;托架4靠近自身端部的位置处均开设有通孔,托架4通过通孔套设在立杆12上,从而与架体滑动配合。

高度调节件5包括丝杠51和施力件52,丝杠51底部竖直穿过托架4重叠部分,通过与固接在运输平台11上的轴承座配合转动安装在运输平台11上;架体的框架13上水平固接有支撑板,丝杠51顶部穿过支撑板,通过轴承与支撑板转动配合。本实施例中,施力件52选为手动摇把,固接在丝杠51顶部。

施力件52驱使丝杠51转动,使得托架4沿丝杠51轴线作升降往复运动,托架4端部与立杆12配合对托架4起到导向限位的作用,使托架4升降过程更平稳。

架体中还布置有长度可调的安装架6,安装架6位于托架4下方。安装架6包括伸缩杆61、将伸缩杆61水平安装在架体中的安装座62以及连接在伸缩杆61活动端的夹持件63。

具体的,安装座62固接在运输平台11顶部,安装座62自身水平开设有安装孔;伸缩杆61包括内杆611和外管612,外管612穿设在安装孔中,与安装座62固定连接;内杆611穿设在外管612中,与外管612滑动配合。伸缩杆61的横截面设为矩形,或在内杆611的周面上固接有滑块,在外管612上开设有滑槽,滑块与滑槽滑动限位配合,以使内杆611在外管612中作平稳滑移运动。

外管612上螺纹连接有顶丝,顶丝的端部能穿过管壁,抵压在内杆611上,以此实现内杆611在外管612中的定位。

夹持件63上设置有弹性夹口633,用于对信息监测系统3中的元器件夹持安装;夹持件63连接在内杆611远离外管612的一端,通过伸缩杆61实现元器件在水平方向上的位置调节。

进一步的,在内杆611远离外管612的端部竖直向上固接一连接杆64;夹持件63上设置有与连接杆64滑动配合的滑套631,滑套631的外表面上沿径向延伸形成有夹持板632,弹性夹口633开设在夹持板632的端部;滑套631在连接杆64上作滑移运动,带动安装在夹持板632上的元器件同步运动,以此实现元器件在竖直方向上的位置调节。滑套631也通过顶丝与连接杆64固定连接。

伸缩杆61的外管612通过安装座62完全位于架体内,且外管612朝向内杆611的端部,与架体边缘留有间隔,使得内杆611回缩到外管612中后,夹持件63位于该间隔处,即夹持件63也位于架体内;以免辅助采集车1移动时,安装在夹持件63上的元器件发生磕碰损坏,对元器件起到保护作用。

安装架6在架体中设置为两组,相对布置在运输平台11上;两组安装架6的伸缩杆61同轴向,上下错位分布,以免发生位置干涉。

如图3所示,信息监测系统3包括位移传感器31、测距传感器32、温度传感器33、微处理单元34、增量编码器35、显示单元36及供电单元37。

其中,位移传感器31安装在夹持件63的弹性夹口633中,用于自动连续采集路面路基的回弹弯沉值数据。

测距传感器32安装在架体上,用于自动连续采集标准车与测点距离。

温度传感器33安装在运输平台11上,用于自动连续采集路面温度。

微处理单元34安装在架体上,与位移传感器31、测距传感器32、温度传感器33可通过无线通信连接,对位移传感器31、测距传感器32、温度传感器33收集到的数据进行处理、存储和输出。

增量编码器35安装在架体上,与微处理单元34信号连接;增量编码器35对微处理单元34收集处理得到的数据进行测点桩号设置、时间间隔设置、逻辑计算。

显示单元36安装在架体的框架13上,与微处理单元34连接,用于显示微处理单元34处理后的数据;微处理单元34可采用usb接口的方式或蓝牙信号连接的方式连接打印机,将数据打印输出。

供电单元37作为供电电源,与信息监测系统3中各元器件供电连接。

本申请的贝克曼梁2弯沉仪自动采集装置的具体测量过程如下:

检查并保持标准车的车况及制动性能良好,将标准车后轮轮隙对准测点后约3-5cm处的位置上;

检查信息监测系统3中各元器件及连接节点是否符合待测要求;

人工将贝克曼梁2插入标准车后轮轮隙处,贝克曼梁2与标准车方向一致,梁臂不得碰到轮胎,贝克曼梁2测头位于轮隙中心前方3-5cm处;

调整定位辅助采集车1位置,调整安装架6长度、高度位置,并将位移传感器31安装在安装架6上,使位移传感器31与贝克曼梁2接触,整个信息监测系统3处于开启收集数据状态;

指挥人员发出前进指令,标准车前进,信息监测系统3先采集一个最大值,待标准车驶出影响距离(3米以上)采集一个终值,微处理单元34对测得的数据处理、存储,完成该测点测量;

将贝克曼梁2放置支撑在托架4端部,利用丝杠51提升托架4将贝克曼梁2提前,随辅助采集车1前往下一测点;

重复上述步骤,对路面路基回弹弯沉值连续完整检测,最后处理输出数据。

上述测量过程中,标准车前进时,信息监测系统3开始采集数据,直到测距传感器32显示标准车驶出测点5米时停止采集;

采集数据包括位移传感器31同步采集路面路基的回弹弯沉值、测距传感器32监测测点与标准车距离、温度传感器33采集试验时气温及路表温度;

采集过程按照设定的时间间隔连续采集,如5ms或更小;

微处理单元34在第n个测点一系列数据中得到初读数(最大值)、终读数(最后一个值),通过增量编码器35计算出第n个测点测值=(初读数-终读数)*2,并通过显示单元36显示测值。

本具体实施例仅仅是对本申请的解释,其并不是对本申请的限制,本领域技术人员在阅读完本说明书后可以根据需要对本实施例做出没有创造性贡献的修改,但只要在本申请的权利要求范围内都受到专利法的保护。

起点商标作为专业知识产权交易平台,可以帮助大家解决很多问题,如果大家想要了解更多知产交易信息请点击 【在线咨询】或添加微信 【19522093243】与客服一对一沟通,为大家解决相关问题。

此文章来源于网络,如有侵权,请联系删除

tips