HI,欢迎来到起点商标网!
24小时服务QQ:2880605093

轨道车辆及转向架的制作方法

2021-02-04 03:02:10|277|起点商标网
轨道车辆及转向架的制作方法

[0001]
本发明涉及轨道车辆技术领域,特别涉及一种轨道车辆及转向架。


背景技术:

[0002]
转向架是轨道车辆的重要组成部分,转向架的主要作用包括承受载荷、传递力、缓冲以及导向作用。因此转向架结构的性能直接决定车辆的牵引能力、运行品质以及列车的安全稳定性。
[0003]
转向架主要包括构架、悬挂装置、驱动装置、基础制动装置和轮对组成,其中轮对组成的车轮直接向钢轨传递车辆重量,通过轮轨黏着产生牵引力及制动力,通过轮对组成转动实现车辆在线路上的走行导向。构架是转向架的骨架部分,用于安装转向架各部分,承受及传递垂向力和水平力。悬挂装置起到缓和冲击振动的作用。驱动装置能够将动力装置产生的功率传递给车轮。另外基础制动装置为将制动缸传递增大一定倍率后传递给执行的机械机构实现列车制动。
[0004]
如何在保证列车高速行驶稳定性的同时,提高转向架的各项性能,尤其满足行驶环境较小的需求,是本领域技术人员亟需解决的问题。


技术实现要素:

[0005]
本发明提供了一种体积小能够适用于行驶空间小的轨道车辆的转向架。
[0006]
本发明提供的一种轨道车辆的转向架,其特征在于,包括以下部件;
[0007][0008]
构架,包括两个箱型纵梁主体和一个横梁主体,两个所述纵梁主体分别焊接于所述横梁主体的两端部,所述横梁主体、所述两个纵梁主体三者形成h型;
[0009]
轮对组成,包括轴箱、车轴以及安装于所述车轴两端的车轮,两个所述纵梁主体位于所述轮对组成的车轮之间,所述轴箱通过一系悬挂装置定位于所述纵梁主体的内侧;
[0010]
驱动系统,至少包括齿轮箱和驱动电机,组成所述驱动系统的各部件形成整体后,该整体通过弹性悬吊机构定位于构架。
[0011]
本发明中将构架配置成箱体是h结构、两轴箱均位于相应侧纵梁主体的内侧,这样可以降低构架横向间距尺寸,实践证明轴箱内置于侧梁内部可以实现体积减少约10%,重量减轻约10%-15%,进而降低空气阻力,节能减排;纵梁主体位于车轮内侧,两纵梁主体跨距减小,构架扭转刚度降低,有利于提高曲线通过能力。另外,驱动系统通过弹性悬吊机构与构架形成振动解耦,稳定性高。
[0012]
可选的,还包括中央悬挂装置,包括抗侧滚扭杆以及设置于所述抗侧滚扭杆两端部的垂向拉杆,每一个所述垂向拉杆的另一端穿过所述横梁主体相应侧上的通孔连接位于构架上方的揺枕。
[0013]
可选的,所述驱动系统还包括输入端联轴节、轴承和输出端联轴节;所述输入端联轴节固定于所述驱动电机的输出端,所述输入端联轴节与所述齿轮箱的输入端通过同一组
轴承支撑;
[0014]
或者/和,所述齿轮箱的输出齿轮轴端面设置有端面齿,用于与所述输出端联轴节相应端啮合配合。
[0015]
可选的,所述弹性悬吊机构包括三个橡胶节点,三个橡胶节点连线形成的三角形集合中心与所述驱动系统的重心重合。
[0016]
可选的,所述驱动电机的输出端固定有联轴节,所述联轴节与所述轴箱的输入端通过同一组轴承支撑于所述构架。
[0017]
可选的,还包括所述中央牵引装置,其包括牵引梁、牵引销和牵引拉杆,所述牵引拉杆的数量为两个,所述牵引梁每一端部内侧设置有与所述牵引拉杆一端铰接的铰接座,所述牵引拉杆的另一端与所述构架横梁上设置的铰接座铰接,两所述牵引拉杆分居于所述牵引梁的两侧。
[0018]
可选的,所述纵梁主体包括中间连接段,所述中间连接段包括上盖板、下盖板、内侧板和外侧板,所述上盖板部分侧缘向内延伸形成所述横梁主体的箱体部分上壁,所述下盖板部分侧缘向内延伸形成所述横梁主体的箱体部分下壁。
[0019]
可选的,所述横梁主体包括上板体、下板体以及两个立板,四者围成箱体结构,并且所述两个立板的两端均延伸至所述上板体和所述下板体相应端部的外侧;两个所述立板与相应侧的所述中间连接段的内侧板焊接;所述上盖板部分侧缘向内延伸形成第一内延伸段,所述下盖板部分侧缘向内延伸形成第二内延伸段,所述第一内延伸段、所述第二内延伸段分别与所述横梁主体的上板体、下板体对接焊接;两个所述立板与相应侧的所述中间连接段的内侧板焊接。
[0020]
可选的,还包括横向贯穿所述纵梁主体的支撑管,所述支撑管的内端部穿出所述纵梁主体形成第一齿轮箱吊座,所述支撑管向外延伸至所述纵梁主体的外部形成有制动吊座和高度阀安装座。
[0021]
可选的,所述一系悬挂装置包括以下部件:
[0022]
弹簧组件,其数量包括两个,分别设置于轴箱两侧,并且二者关于所述轴箱的中心轴对称;所述弹簧组件包括托盘和主弹簧,所述托盘固定连接所述轴箱,所述主弹簧竖直设置于相应所述托盘与所述构架之间;
[0023]
橡胶组件,设置于所述轴箱顶壁及与其相对应的所述构架之间,所述橡胶组件包括框架和安装于所述框架的橡胶体,所述框架包括用于与构架配合固定的安装结构,所述橡胶体通过固定件与所述轴箱顶壁竖直方向定位;
[0024]
拉杆,纵向设置且其两端分别与所述轴箱和构架铰接,用于提供纵向刚度。
[0025]
可选的,所述橡胶体设置有竖直延伸的安装孔,所述安装孔至少下端为开口结构,所述安装孔至少部分孔段与所述轴箱顶壁设置的安装凸柱配合。
[0026]
可选的,所述安装孔为通孔结构,其内部结合有刚套,所述刚套包括顶壁以及自所述顶壁外缘向下延伸的筒体,所述筒体下端开口,所述筒体外壁与所述安装孔内壁结合,所述筒体内孔至少部分孔段与所述安装凸柱过盈配合,所述刚套的顶壁通过所述固定件固定连接所述安装凸柱;
[0027]
或者/和,所述橡胶体包括若干橡胶块和设置于相邻橡胶块之间的刚性体,各所述橡胶块和各所述刚性体结合形成的整体由两端部向中部尺寸逐渐增大,所述橡胶体两端部
分别与所述框架的相应内壁配合固定。
[0028]
可选的,所述弹簧组件包括限位杆,所述限位杆的上端固定连接所述构架,下端部穿过所述托盘,所述限位杆位于所述托盘下方的杆段设置有限位块,以限制所述限位杆自所述托盘脱出,并且常态下,所述限位块与所述托盘底壁之间具有预定距离;
[0029]
或者/和,所述弹簧组件包括上安装板,所述上安装板包括垂向延伸的柱体,所述限位杆的上端部为外螺纹段,所述柱体设置有与所述外螺纹段配合连接的内螺纹段;所述柱体的上端与所述构架固定连接,所述主弹簧套设于所述柱体外围。
[0030]
可选的,还包括主动垂向减震器,竖直设置于所述轴箱旁侧,所述主动垂向减震器上端与所述构架铰接,下端与固定于所述轴箱侧壁的支撑座铰接。
[0031]
可选的,所述拉杆的数量为一个,所述拉杆的前端部通过铰接座与所述托盘铰接,所述拉杆的后端部通过铰接座与所述构架铰接,其中所述铰接座包括弹性体和刚性铰接杆,所述刚性铰接杆部分结合于所述弹性体内部,两端伸出所述弹性体外部,所述刚性铰接杆的两端部均设置有铰接孔,所述拉杆的两端部均设有安装通孔,安装时,所述弹性体张紧安装于所述安装通孔内部,并且与所述托盘铰接的所述铰接座的铰接孔轴向纵向布置,与所述构架铰接的所述铰接座的铰接孔轴向竖直布置。
[0032]
此外,本发明还提供了一种轨道车辆,包括转向架和车体,所述转向架为上述任一项所述的轨道车辆的转向架。
[0033]
因本发明所提供的轨道车辆包括上述转向架,故该轨道车辆也具有转向架的上述技术效果。
附图说明
[0034]
图1是本发明一种具体实施例中构架的结构示意图;
[0035]
图2为图1所示构架的俯视图;
[0036]
图3为图1所示构架的局部示意图;
[0037]
图4为本发明一种具体实施例中纵梁主体的示意图;
[0038]
图5为本发明一种具体实施例中横梁组件的结构示意图;
[0039]
图6为图5所示横梁组件的另一方向的结构示意图;
[0040]
图7为图6所示结构的局部放大图;
[0041]
图8为本发明一种实施例中转向架部分结构的结构示意图;
[0042]
图9为本发明一种实施例中橡胶组件的剖视示意图;
[0043]
图10为本发明一种实施例中铰接座的结构示意图;
[0044]
图11为本发明一种实施例中驱动系统的剖视示意图;
[0045]
图12为本发明一种实施例中驱动系统的弹性悬吊机构的设置方式示意图;
[0046]
图13为本发明一种实施例中转向架的三维结构示意图。
[0047]
其中,图1-图13中附图标记与部件之间的一一对应关系如下所示:
[0048]
11-第一纵梁主体;111-第一纵梁主体的折弯箱体段;112-第一上盖板;12-第二纵梁主体;120-第二纵梁主体的折弯箱体段;121-第二上盖板;1211-第一内延伸段;122-下盖板;1221-第二内延伸段;20-横梁主体;21-上板体;211-第一延伸部;22-下板体;221-第二延伸部;23-立板;24-加强筋;231-延伸段;30-附加箱体;40-空气弹簧安装座;40
’-
空气弹
簧;50-第二齿轮箱安装座;53-电机吊座;60-支撑柱;61-第一齿轮箱安装座;62-制动吊座;63-高度阀安装座;71-第一横向止挡块;72-第二横向止挡块;80-牵引拉杆座;81-电机横向减振座;82-电机横向止挡座;821-第一板;822-第二板;821a-吊装孔;90-弹簧套筒;
[0049]
8-0-驱动系统;8-1-驱动电机;8-2-输入端联轴节;8-3-轴承;8-4输入端;8-6端面齿;8-7-输出端联轴节;8-8-齿轮箱。
[0050]
1-构架;2-轴箱;2-1-安装凸柱;3-弹簧组件;31-主弹簧;32-限位杆;321-限位块;33-上安装板;331-柱体;4-橡胶组件;41-橡胶体;411-橡胶块;412-刚性体;42-框架;43-刚套;44-螺钉;5-拉杆;6-1-第一铰接座;6-2-第二铰接座;601-弹性体;602-刚性铰接杆;603-铰接孔;7-主动垂向减震器;
[0051]
7-0-轮对组成;5-0-中央牵引装置。
具体实施方式
[0052]
为了使本领域的技术人员更好地理解本发明的技术方案,下面结合附图和具体实施例对本发明作进一步的详细说明。
[0053]
请参考图1至图13,轨道车辆至少包括构架1、轮对组成7-0、驱动系统8-0、中央牵引装置5-0、基础制动装置和一系悬挂装置。
[0054]
其中轮对组成直接向钢轨传递车辆重量,通过轮轨黏着产生牵引力及制动力,通过轮对组成转动实现车辆在线路上的走行导向。构架是转向架的骨架部分,用于安装转向架各部分,承受及传递垂向力和水平力。悬挂装置起到缓和冲击振动的作用。驱动装置能够将动力装置产生的功率传递给轮对组成。另外基础制动装置为将制动缸传递增大一定倍率后传递给执行的机械机构实现列车制动。
[0055]
本发明所提供的轨道车辆的转向架中构架包括两个箱型纵梁主体和一个横梁主体20,两个纵梁主体分别焊接于横梁主体20的两端部,横梁主体20、两个纵梁主体三者形成h型。本文中横梁主体优选也为箱型结构,后文将详细介绍横梁主体20和纵梁主体形成的构架的一种具体结构。
[0056]
本发明中的轮对组成包括轴箱2、车轴以及安装于车轴两端的车轮,即车轴的两端部分别设置有第一车轮和第二车轮,两纵梁主体位于两车轮之间,即两车轮位于相应侧的纵梁主体外侧。纵梁主体位于车轮内侧,两纵梁主体跨距减小,构架扭转刚度降低,有利于提高曲线通过能力。
[0057]
其中轴箱2通过一系悬挂装置定位于纵梁主体的内侧,通常同一车轴两端车轮分别对应一个轴箱2,两轴箱2均位于相应侧纵梁主体的内侧。这样可以降低构架横向间距尺寸,实践证明轴箱内置于侧梁内部可以实现体积减少约10%,重量减轻约10%-15%,进而降低空气阻力,节能减排。
[0058]
本发明中的驱动系统包括齿轮箱8-8和驱动电机8-1,组成所述驱动系统的各部件形成整体后,该整体通过弹性悬吊机构定位于构架1。驱动系统8-0通过弹性吊挂方式安装,于构架形成振动解耦,有利于实现大簧间重量解耦,提高临界速度。
[0059]
请参考图11,在一种具体实施方式中,驱动系统还包括输入端联轴节8-2、轴承8-3和输出端联轴节8-7;输入端联轴节8-2固定于驱动电机8-1的输出端,所述输入端联轴节8-2与齿轮箱8-8的输入端8-4通过同一组轴承8-3支撑;该结构中联轴节和轴箱输入端8-4通
过一组轴承支撑于构架,进一步降低空间占据。
[0060]
进一步地,齿轮箱8-8的输出齿轮轴端面设置有端面齿8-6,用于与输出端联轴节8-7相应端啮合配合,齿轮箱8-8的输出端与外部输出联轴节通过齿配合,大大降低空间占据,有利于进一步实现转向架结构紧凑。
[0061]
在一种具体实施方式中,弹性悬吊机构包括三个橡胶节点,三个橡胶节点连线形成的三角形集合中心与所述驱动系统的重心重合。如图12所示,三个橡胶节点分别为第一橡胶节点8-a、第二橡胶节点8-b和第三橡胶节点8-c,驱动系统通过三个橡胶节点弹性悬挂连接构架两侧的纵梁主体。如图4所示,为了实现其中一橡胶节点的设置,其中一纵梁主体的末端还设置有向内弯折的折弯箱体段120,第三橡胶节点设置于折弯箱体段120,第二橡胶节点8-b可以位于同一纵梁主体的内侧,第一橡胶节点8-a可以位于另一纵梁主体上。即第一橡胶节点8-a和第三橡胶节点8-c位于同一根纵梁主体,第二橡胶节点8-b位于另一根纵梁主体。
[0062]
上述各实施例中的转向架还包括中央悬挂装置,其包括抗侧滚扭杆以及设置于抗侧滚扭杆两端部的垂向拉杆,每一个垂向拉杆的另一端穿过横梁主体20相应侧上的通孔连接位于构架上方的揺枕。其中,本文附图中未标注抗侧滚扭杆、垂向拉杆,但是并不妨碍本领域内技术人员对本文技术方案的理解和实施。
[0063]
本发明中转向架的中央牵引装置可以包括牵引梁、牵引销和牵引拉杆,三者均位于构架之上牵引拉杆的数量为两个,牵引梁每一端部内侧设置有与牵引拉杆一端铰接的铰接座,牵引拉杆的另一端与构架横梁上设置的铰接座铰接,两牵引拉杆分居于牵引梁的两侧。中央牵引装置位于构架的上方,牵引梁大致为z型结构。该结构的中央牵引装置高度比较低,减小垂向空间的占据。图中未示出牵引梁、牵引销和牵引拉杆,但是并不妨碍本领域内技术人员对本文技术方案的理解。
[0064]
本文给出了转向架构架的一种具体实施方式。
[0065]
请再次参考图1至图7,在一种具体实施方式中,构架包括一个横梁组件、两个纵梁组件,其中横梁组件包括横梁主体20,横梁主体20为箱型结构;也就是说,横梁主体20内部为中空结构。两个纵梁组件,每一纵梁组件包括箱型纵梁主体,两个纵梁主体分别焊接于横梁主体的两端部,横梁主体20、两个纵梁主体三者形成h型。横梁主体20大致位于纵梁主体的中间位置。
[0066]
为了描述技术方案的简洁,本文将两纵梁主体分别定义为第一纵梁主体11和第二纵梁主体12,横梁主体位于第一纵梁主体11和第二纵梁主体12之间。第一纵梁主体11的上盖板定义为第一上盖板112,第二纵梁主体12的上盖板定义为第二上盖板121。第一上盖板112和第二上盖板121的形状相同。两纵梁主体的下盖板结构请参考上盖板结构,图中未示出,但是并不妨碍本领域内技术人员对本文技术方案的理解。
[0067]
其中,各纵梁主体包括中间连接段,中间连接段包括上盖板、下盖板、内侧板和外侧板,上盖板部分侧缘向内延伸形成横梁主体20的箱体部分上壁,下盖板部分侧缘向内延伸形成横梁主体20的箱体部分下壁。
[0068]
通过上述描述可知,与横梁主体20为圆管相比,本发明中的横梁主体20的连接部分与纵梁主体使用同一上盖板、下盖板形成,二者连接位置逐渐过渡,避免了二者连接截面突变,大大降低了两者连接位置的强度,提高构架使用安全性。
[0069]
并且,本发明中用于安装轴箱的安装座设置于纵梁主体的内侧,这样可以尽量缩小量纵梁主体之间的距离。试验证实,将轴箱的安装座置于纵梁主体内侧,两纵梁主体之间的中心距离可以降低至1200mm以内,在一种具体实施例中两纵梁主体之间的中心距离可以为1120mm-1150mm,大大提高了构架的使用灵活性。
[0070]
本文中的上述中心距离是指第一纵梁主体11与第二纵梁主体12的纵向中心面之间的距离。
[0071]
在一种具体实施例中,横梁主体20包括上板体21、下板体22以及两个立板23,四者围成箱体结构,并且两个立板的两端均延伸至上板体21和下板体22相应端部的外侧;也就是说,形成横梁主体20的上板体21、下板体22和两立板23的长度不同,两立板23的长度大于上板体21、下板体22的长度,立板23伸出上板体21和下板体22外端部。如图5所示立板的两端均具有延伸段231,延伸段231伸出上板体21和下板体22相应外端部。
[0072]
纵梁主体的上盖板部分侧缘向内延伸形成第一内延伸段,下盖板部分侧缘向内延伸形成第二内延伸段,第一内延伸段、第二内延伸段分别与横梁主体20的上板体、下板体对接焊接;两个立板与相应侧的中间连接段的内侧板焊接。例如图4中给出了第二纵梁主体12的第二上盖板121和下盖板122,其中第二上盖板121的第一内延伸段1211和下盖板122的第二内延伸段1221可参见图。
[0073]
该实施方式中,纵梁主体的上盖板的第一内延伸段伸至两立板之间,端部与横梁主体的上板体对焊,并且第一内延伸段的两侧也与两立板相应位置焊接,同理,纵梁主体的下盖板的第二内延伸段也位于两立板之间,第二内延伸段1221与横梁主体20的下板体对焊,第二内延伸段的两侧与两立板相应位置焊接。这样横梁主体20与纵梁主体连接位置也形成箱体结构,并且连接位置变化连续,进一步增加构架的使用强度。在上述实施例的基础上,两上盖板上分别固定有第一横向止挡块71和第二横向止挡块72,第一横向止挡块71和第二横向止挡块72分别限定车体横向运动的两极限位置。
[0074]
第一横向止挡块71和第二横向止挡块72可以相对设置,形状不限只要能够限定车体的横向运动即可。
[0075]
在一种具体实施方式中,构架1还进一步包括横向贯穿纵梁主体的支撑管60,支撑管60的内端部穿出纵梁主体形成第一齿轮箱吊座61,支撑管60向外延伸至纵梁主体的外部形成有制动吊座62和和高度阀安装座63,高度阀安装座63是为了安装高度阀,制动吊座62和高度阀安装座63的结构不限定。
[0076]
本实施方式中,第一齿轮箱吊座61、制动吊座62和高度阀安装座63为一体结构,优化构架结构,提高装配灵活性。
[0077]
上述各实施例中,纵梁主体其中一端部向内折弯形成折弯箱体段,折弯箱体段具有朝向第一齿轮箱吊座的开口,开口位置设置有第二齿轮箱吊座,第一齿轮箱吊座与其同侧的第二齿轮箱吊座共同形成齿轮箱的吊座。两纵梁主体的折弯箱体段分居两端,也就是说,两纵梁主体的折弯箱体段不位于同一端部。
[0078]
如图1和图2所示,第一纵梁主体的折弯箱体段111位于左端,第二纵梁主体的折弯箱体段120位于右端。左端和右端是以图1和图2中各部件之间的相对位置关系来描述的。第一纵梁主体的折弯箱体段111内部设置有第二齿轮箱吊座50,用于安装第三橡胶节点8-c.第一纵梁主体11内侧还设置有第一齿轮箱吊座61,用于安装第二橡胶节点8-b,共同形成齿
轮箱的吊座。
[0079]
同理,第二纵梁主体的折弯箱体段120内部设置有第二齿轮箱吊座50,与第二纵梁主体12内侧的第一齿轮箱吊座61以及第一纵梁主体上的电机吊座51共同形成驱动系统8-0的三个橡胶节点的安装连接位置,配合橡胶节点安装连接,以实现驱动系统8-0的弹性悬吊。
[0080]
本实施方式中一方面折弯箱体段可以加强纵梁主体的支撑强度,另一方面第二齿轮箱吊座位于纵梁主体的折弯箱体段内部,结构紧凑,减少空间占据。
[0081]
在一种具体实施例中,上述各实施例中的构架还可以包括形成腔体的附加箱体30,附加箱体30的数量为两个,对称布置于纵向中心面的两侧,且两个附加箱体30分别位于纵梁主体的外侧,附加箱体30的腔体与相应侧纵梁主体内部形成的气室连通;附加箱体30的顶壁外部设置有空气弹簧安装座40,附加箱体30设置有通过腔体连通的进口和出口。附加箱体30的进口与气源直接或者间接连通,出口与空气弹簧40

连通。通常中间连接段的内部空腔也可以设置为气箱,中间连接段内部的气腔与附加箱体30的腔体连通,共同形成空气弹簧40

工作所需气源的存储空间。
[0082]
在一种具体实施方式中,上盖板和下盖板分别包括横向延伸至外侧板之外的第一外延伸段和第二外延伸段,附加箱体30的顶壁、底壁分别与第一外延伸段、第二外延伸段对接焊接,其余两侧壁内端均焊接于外侧板。
[0083]
也就是说,上盖板、下盖板分别形成附加箱体30部分顶壁、部分底壁,这样可以使附加箱体30和纵梁主体形成一体,使二者形成结构更加紧凑。
[0084]
上述各实施例中,横梁主体的两立壁均设置有电机吊座51和电机吊座止挡。电机吊座51用于安装第一橡胶节点8-a。电机吊座止挡安装后,电机吊座止挡的中心与电机高度一致,避免增加力矩。
[0085]
具体地,每一纵梁主体还可以设置有弹簧套筒90,用于安装一系橡胶;弹簧套筒90的下端开口且包括露置于纵梁主体底壁外部的管段,弹簧套筒90的上端焊接于纵梁主体的顶壁内表面;弹簧套筒90的数量为两个,关于纵梁主体横向中心面对称。
[0086]
纵梁主体的顶壁与弹簧套筒90相对位置还设置有通孔,方便弹簧套筒的固定。请参考图2,第一纵梁主体11上设置有通孔11a,第二纵梁主体12上设置有通孔12a。
[0087]
上述各实施例中,构架还包括牵引拉杆座80,牵引拉杆座80用于安装一系悬挂的纵向拉杆的一端,横梁主体20的上板体21具有纵向延伸且伸出相应立板23外壁的第一延伸部211,牵引拉杆座80至少部分安装于第一延伸部211的上表面。在实现一系悬挂的纵向拉杆安装的前提下,可实现结构尽量紧凑。通常沿纵向具有两个牵引拉杆座80,分居于横梁主体20的端部,当然,具体位置可以根据实际车型而定。牵引拉杆座80的具体结构本文也不做具体限定。
[0088]
在一种具体的实施方式中,构架还包括电机横向减振器座81,具有用于限制电机横向振动位移的结构;电机横向减振器座81安装于第一延伸部211的下表面。该实施例中结构进一步紧凑,不占用其他空间位置,有利于构架整体的优化。
[0089]
进一步地,上述各实施例中下板体22具有纵向延伸至相应侧立板23外壁的第二延伸部221,第二延伸部221的上表面设置有电机横向止挡座82,电机横向止挡座还与相应立板外侧壁焊接固定,电机横向止挡座82上还设置有吊装孔。
[0090]
也就是说,本发明中的电机横向止挡座在实现对电机横向限位的同时,又具有吊装配合的功能,即吊装设备通过连接吊装孔可以实现构架的吊装。
[0091]
具体地,电机横向止挡座82包括两个组件,两个组件间隔预定距离布置,每一个组件包括围成空腔结构的第一板821和第二板822,第一板的下表面与第二延伸部221焊接,后端与立板23焊接,第一板821和第二板822上端焊接固定,第一板821设置有吊装孔821a,第二板822配合电机限位。
[0092]
该实施方式中第一板821和第二板822围成空腔结构,在实现吊装和止挡功能的前提下,可以尽量降低整体重量。
[0093]
横梁主体20的上板体21和下板体22设置有同轴通孔,通孔内部安装有钢管25,箱体结构内部设置有加强筋24。中央牵引装置位于横梁主体20上方和下方的构件可以通过横梁主体20上设置的通孔实现连接,大大提高了中央牵引装置的布置灵活性。并且箱体结构内部的加强筋24起到了增加横梁主体20使用强度的目的。
[0094]
请参考图8和图9,轨道车辆的转向架轴箱2安装在轮对组成车轴上,如上所述轴箱2通过一系悬挂装置与构架1连接。
[0095]
本发明中的一系悬挂装置至少包括弹簧组件3、橡胶组件4和拉杆5。
[0096]
弹簧组件3的数量包括两个,分别设置于轴箱2两侧,并且两个弹簧组件3关于轴箱2的中心轴对称设置。为了说明技术方案的简洁,本文将两个弹簧组件3分别定义为第一弹簧组件3和第二弹簧组件3,第一弹簧组件3和第二弹簧组件3分居于轴箱2的前后两侧,其中每一个弹簧组件3包括托盘和主弹簧31,托盘固定连接轴箱2的侧壁,当然托盘也可以直接成型于轴箱2,即托盘与轴箱2一体成型。主弹簧31竖直设置于托盘与构架1之间。
[0097]
以第二弹簧组件3为例,第二弹簧组件3包括托盘和主弹簧31,构架1上也设置有安装座,主弹簧31压设于托盘和构架1的安装座之间。关于主弹簧31与构架1的具体连接方式后文将详细介绍。
[0098]
托盘可以尽量设置于轴箱2的底壁位置,这样可以尽量增大弹簧组件3的安装空间。
[0099]
本发明中的橡胶组件4设置于轴箱2顶壁与其相应的构架1之间,即橡胶组件4位于轴箱2的上方。橡胶组件4包括框架42和安装于框架42的橡胶体41,框架42包括用于与构架1配合固定的安装结构,也就是说,框架42通过其上设置的安装结构固定安装于构架1上,例如安装结构包括螺栓,使用螺栓固定连接框架42和构架1,当然安装结构还可以为其他结构,例如框架42通过焊接固定于构架1。
[0100]
橡胶体41包括定位于轴箱2顶壁的配合结构,并且橡胶体41与轴箱2通过固定件竖直方向定位,以免橡胶体41脱离轴箱2。
[0101]
本发明的拉杆5纵向设置,并且拉杆5的两端分别与轴箱2和构架1铰接,拉杆5用于提供纵向刚度。
[0102]
本发明所提供的一系悬挂装置中的弹簧组件3竖直设置于轴箱2和构架1之间可以提供垂向刚度,弹簧组件3的数量为两个且分别设置于轴箱2的旁侧,这样可以将弹簧组件3与轴箱2的连接点尽量靠近轴箱2底部设置,适当增大弹簧组件3的设置空间,有利于设置较高刚度的弹簧组件3。并且本发明中的轴向定位装置中设置有橡胶组件4,橡胶组件4安装于轴箱2顶壁与构架1之间,进一步提供垂向刚度和横向刚度,通过合理设置弹簧组件3和橡胶
组件4可以满足不同的使用刚度要求,提高了使用灵活性。
[0103]
在一种具体实施例中,橡胶体41设置有竖直延伸的安装孔,安装孔至少下端为开口结构,安装孔至少部分孔段与轴箱2顶壁设置的安装凸柱2-1配合。也就是说,轴向体顶壁设置有向上突起的安装凸柱2-1,安装凸柱2-1可以为圆柱状,其可以都安装于橡胶体41的安装孔内部,也可以上部柱段安装于安装孔内部。在一种具体实施例中安装凸柱2-1的配合段的外壁为锥形结构,自下而上配合段的尺寸逐渐减小。
[0104]
当然,安装凸柱2-1的具体结构不限于本文中的描述,还可以为其他结构,只要能够与橡胶体41的安装孔配合实现横向刚度和垂向刚度的使用需求即可。
[0105]
上述实施方式中,轴箱2其顶壁的安装凸柱2-1插入橡胶体41内部,可以实现二者可靠结合,有利于在有限的空间内部实现大刚度橡胶体41布置,并且力传递可靠性较佳。
[0106]
具体地,安装孔为通孔结构,其内部结合有刚套43,刚套43包括顶壁以及自顶壁外缘向下延伸的筒体,筒体下端开口,筒体外壁与安装孔内壁结合,筒体内孔至少部分孔段与安装凸柱过盈配合,刚套43的顶壁通过固定件固定连接安装凸柱2-1。
[0107]
其中,固定件可以为螺钉44等部件。
[0108]
进一步地,上述各实施例中的橡胶体41可以包括若干橡胶块411和设置于相邻橡胶块411之间的刚性体412,各橡胶块411和各刚性体412结合形成的整体由两端部向中部尺寸逐渐增大,即橡胶体41中部径向尺寸大,两端径向尺寸小,这样可以实现垂向小刚度、水平大刚度的定位需求。橡胶体41两端部分别与框架42的内壁配合固定。
[0109]
橡胶块411与刚性体412可以通过硫化工艺形成整体。橡胶块411的数量可以由其所应用的具体环境而定。
[0110]
橡胶块411与刚性体412结合的结构在实现橡胶块411减震效果同时,可以提供一定的刚性。
[0111]
上述各实施例中,弹簧组件3包括限位杆32,限位杆32的上端固定连接构架1,下端部穿过托盘,限位杆32位于托盘下方的杆段设置有限位块321,以限制限位杆32自托盘脱出,也就是说,限位块321的尺寸大于托盘上供限位杆32穿过的通孔尺寸。并且常态下,限位块321与托盘底壁之间具有预定距离,这样允许弹簧在垂向上具有预定活动量。
[0112]
限位块321具有两方面的作用,一方面可以避免弹簧组件3中的弹簧被过渡拉长,起到保护弹簧的作用;另一方面,当构架1起吊时,在限位杆32与托盘限位作用下,轴箱2、弹簧组件3等部件可以随构架1一同向上运动,实现起吊。
[0113]
进一步地,弹簧组件3还可以包括上安装板33,上安装板33包括垂向延伸的柱体331,柱体331的具体长度可以根据具体使用环境设置。限位杆32的上端部为外螺纹段,柱体331设置有与外螺纹段配合连接的内螺纹段。柱体331可以为两端开口的筒状结构,筒状结构的内壁设置有内螺纹段。安装时,限位杆32的外螺纹段穿过托盘与柱体331上设置的内螺纹段配合连接。柱体331的上端与构架1固定连接,主弹簧31套设于柱体331外围。
[0114]
柱体331一方面可以实现限位杆32的可靠安装,另一方面对主弹簧31起到压缩或伸长导向作用,式主弹簧31始终沿垂向动作。
[0115]
上述各实施例中,一系悬挂装置还可以包括调节垫片,调节垫片设置于上安装板33与构架1之间。通过限位杆32施加向下拉力,带动上安装板33向下移动,并压缩主弹簧31,使上安装板33与构架1分离,同将调节垫片插入到上安装板33与构架1之间,进而实现主弹
簧31高度调整。
[0116]
上述各实施例中,一系悬挂装置还可以包括主动垂向减震器7,竖直设置于轴箱2旁侧,主动垂向减震器7上端与构架1铰接,下端与固定于轴箱2侧壁的支撑座铰接。主动垂向减震器7可以实现低频大阻尼,高频小阻尼,使振动快速衰减。
[0117]
主动垂向减震器7的结构可与现有的结构相同,本文不做进一步限定。
[0118]
本发明一种具体实施例中将主弹簧31设计为高度可调形式,进一步增加该装置使用的灵活性。
[0119]
请再次参考图8,上述各实施例中,拉杆5的数量可以为一个,拉杆5的前端部通过铰接座与托盘铰接,拉杆5的后端部通过铰接座与构架1铰接,如图8所示,拉杆5的前端部通过第一铰接座6-1铰接托盘,拉杆5的后端部通过第二铰接座6-2铰接构架1。其中第一铰接座6-1和第二铰接座6-2可以为相同结构,也可以为不同结构。本文给出了第一铰接座和第二铰接座为相同结构的具体实施方式。
[0120]
请结合图10,在一种具体实施例中,拉杆5两端的铰接座包括弹性体601和刚性铰接杆602,刚性铰接杆602部分结合于弹性体601内部,两端伸出弹性体601外部,刚性铰接杆602的两端部均设置有铰接孔603,拉杆5的两端部均设有安装通孔,安装时,弹性体601张紧安装于安装通孔内部,并且与托盘铰接的铰接座的铰接孔轴向纵向,即第一铰接座与托盘的铰接孔的轴向为纵向。与构架1铰接的铰接座的铰接孔轴向竖直,即第二铰接座与构架1的铰接孔的轴向为竖直方向。
[0121]
上述各实施例中,拉杆5的长度满足以下条件:拉杆5对托盘施加的纵向力相对车轮中心的力矩、橡胶体41对轴箱2施加的纵向力相对车轮中心的力矩二者平衡。
[0122]
本发明所提供的一种转向架包括上述任一项所述的一系悬挂装置,托盘固定于靠近轴箱2的底部位置,构架1与橡胶体41相对位置设置有通孔,以便安装橡胶体41与轴箱2的顶壁之间的固定件。
[0123]
本发明还提供了一种轨道车辆,包括转向架和车体,转向架为上述任一实施例所述的转向架。
[0124]
本发明所提供的轨道车辆包括上述实施例的转向架,故其也具有转向架的上述技术效果。
[0125]
轨道车辆其他结构不做进一步详述,请参考现有技术。
[0126]
以上对本发明所提供的一种轨道车辆及转向架进行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

起点商标作为专业知识产权交易平台,可以帮助大家解决很多问题,如果大家想要了解更多知产交易信息请点击 【在线咨询】或添加微信 【19522093243】与客服一对一沟通,为大家解决相关问题。

此文章来源于网络,如有侵权,请联系删除

tips