一种多枪的充电桩及充电桩电路的制作方法
本发明涉及充电桩技术领域,特别涉及一种多枪的充电桩及充电桩电路。
背景技术:
随着人类环保意识的增强,为了降低温室效应,改善环境污染,新能源汽车的研发推广在全球盛行,相应的,电动汽车充电桩也在功率密度和防护等级上进行不断升级。
目前,电动汽车充电桩在应用拓扑上基本采用模块与桩分离的模式,如图1所示,模块采用n+1并联冗余输出,即每个直流模块独立工作,根据其输出功率和can总线通讯进行功率分配,均流输出,直流充电桩根据并联的模块数量及功率实现单枪或双枪输出。
现有技术中多模块并联的方案,存在多模块占据空间大、成本高、待机功耗高等缺点,并且,由于其采用模块并联冗余输出,配备单个或双个充电枪,模块与充电枪位号对应,因此不能进行多个用户同时使用。
技术实现要素:
有鉴于此,本发明实施例提供一种多枪的充电桩及充电桩电路,解决了现有技术中存在成本高、待机功耗高以及无法满足多个用户同时使用的问题。
为实现上述目的,本发明实施例提供如下技术方案:
本发明第一方面提供了一种多枪的充电桩电路,包括:功率分配单元、控制单元、一个ac/dc单元以及至少两个dc/dc单元;其中:
所述ac/dc单元通过总母线与各所述dc/dc单元的输入端相连;
各所述dc/dc单元的输出端均通过所述功率分配单元连接至对应的充电枪口;
所述控制单元用于检测各所述dc/dc单元的输出电压,并根据各所述dc/dc单元的输出电压以及相应充电枪口的功率需求,控制所述功率分配单元动作,使至少一个所述dc/dc单元连接至对应充电枪口,实现对相应充电枪口的功率分配。
优选的,所述功率分配单元包括:使至少两个所述dc/dc单元的输出端实现并联连接的并联支路,和/或,使至少两个所述dc/dc单元的输出端实现串联连接的串联支路;
所述并联支路和所述串联支路中均设置有可控开关。
优选的,所述并联支路,包括:分别连接对应所述dc/dc单元输出端的正极支路和负极支路,所述正极支路与所述负极支路均设置有可控开关。
优选的,所述串联支路,包括:连接对应所述dc/dc单元输出端不同极的支路。
优选的,所述功率分配单元还包括:使各个所述dc/dc单元的输出端实现独立输出的独立支路;
所述独立支路中设置有可控开关。
优选的,各所述dc/dc单元,分别通过一个对应的所述独立支路,与对应充电枪口相连。
优选的,所述独立支路,包括:设置于所述dc/dc单元输出端的正极支路和负极支路,且至少在所述正极支路上设置有可控开关。
优选的,所述控制单元用于控制所述功率分配单元动作时,具体用于:
通过控制所述功率分配单元内相应可控开关的通断,使相应所述dc/dc单元独立输出,或者,以串联或并联形式进行输出。
优选的,所述控制单元包括:分别设置于各所述dc/dc单元内部的控制器;
所述控制器用于检测对应所述dc/dc单元的输出电压,并通过控制所述功率分配单元内相应可控开关动作,实现对应所述dc/dc单元的功率分配控制。
优选的,所述dc/dc单元的主电路为隔离型或非隔离型变换拓扑。
优选的,所述ac/dc单元的主电路为单相或者三相整流功率因数校正整流电路。
本发明第二方面还提供了一种多枪的充电桩,包括:壳体,设置于所述壳体内部的散热装置和如上述任一项所述的多枪的充电桩电路,以及设置于所述壳体外部的多个充电枪;其中:
各个所述充电枪的输入端与所述多枪的充电桩电路中的各个充电枪口一一对应相连;
所述散热装置用于对所述多枪的充电桩电路进行散热。
基于上述本发明实施例提供的一种多枪的充电桩电路,其仅采用一个ac/dc单元进行整流,以该ac/dc单元的直流侧同时挂接多个dc/dc单元,因此,整流单元控制器及控制电路少,即无源器件少,进而整流成本低且待机功耗小,无功损耗低;并且,各dc/dc单元输出端均通过功率分配单元连接至对应的充电枪口,进而由控制单元根据各dc/dc单元的输出电压以及相应充电枪口的功率需求,控制功率分配单元进行动作,使得至少一个dc/dc单元连接至对应充电枪口,实现对相应充电枪口的功率分配;也即该多枪的充电桩电路设置有多个充电枪口,通过控制单元及功率分配单元对各个充电枪口进行功率分配,因而能够同时满足多个用户使用,提高了充电桩的利用率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1为现有技术中电动汽车直流充电桩应用拓扑结构示意图;
图2为现有技术中电动汽车直流充电桩内部结构示意图;
图3为本发明实施例提供的一种多枪的充电桩电路的结构示意图;
图4为本发明另一实施例提供的一种多枪的充电桩电路中功率分配单元为并联支路的结构示意图;
图5为本发明另一实施例提供的一种多枪的充电桩电路中功率分配单元为串联支路的结构示意图;
图6为本发明另一实施例提供的一种多枪的充电桩电路中功率分配单元为独立支路的结构示意图;
图7为本发明另一实施例提供的一种多枪的充电桩内部结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本申请中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
如图1中所示,现有技术中的电动汽车直流充电桩的应用拓扑中,基本采用模块与桩分离的模式、n+1并联冗余输出,其模块结构示意图如图2所示,每个模块内部有ac/dc整流电路(如图2中所示的ac/dc单元1至ac/dc单元n)和dc/dc直流变换电路(如图2中所示的dc/dc单元1至dc/dc单元n)。实际应用中,当充电桩处于待机模式时,每个模块都会产生待机功耗,待机无功功率系数高;并且,每个模块都设置有单独的滤波器、控制器以及控制采样电路(图2中未示出),则在多模块模式下,器件数量较多,硬件成本较大;此外,现有技术的充电桩技术采用模块并联冗余输出,配备单个(如图2中充电枪所示)或两个(未进行图示)充电枪,模块与充电枪位号对应,无法供给多个用户同时使用。
因此,本发明实施例提供了一种多枪的充电桩电路,以解决现有技术中存在成本高、待机功耗高以及无法满足多个用户同时使用的问题。
该多枪的充电桩电路的结构示意图如图3所示,包括:功率分配单元110、控制单元(图3中未进行展示)、一个ac/dc单元120以及至少两个dc/dc单元130;其中:
该ac/dc单元120通过总母线与各dc/dc单元130的输入端相连,实际应用时,若如图3所示设置有多个dc/dc单元130,本发明实施例不再采用现有技术的多模块并联方式工作,而是多个dc/dc单元130通过总母线共用一个ac/dc单元120,并且,该ac/dc单元120可以是一种功率因数校正整流电路,即其总母线电压具有一定的电压范围,可以根据dc/dc单元130的输出电压进行调节;也即不同的dc/dc单元130使用同一个ac/dc单元120,则整流单元无源器件少,待机功耗少,无功损耗小。同时,由于只有一个整流单元,减少了整流单元控制器和控制电路的数量,降低了整流成本。
而各dc/dc单元130的输出端均通过功率分配单元110连接至对应的充电枪口(如图3中out+、out-所示);控制单元用于检测各dc/dc单元130的输出电压,并根据各dc/dc单元130的输出电压以及相应充电枪口的功率需求,控制功率分配单元110动作,使至少一个dc/dc单元130连接至对应充电枪口,实现对相应充电枪口的功率分配。
具体的,如图3所示,该功率分配单元110内设置有多个可控开关,可以看出,通过控制其各个可控开关的通断,能够实现各dc/dc单元130的输出端连接至不同的充电枪口。
例如,一个dc/dc单元130的输出端连接至对应的一个充电枪口,或者,多个dc/dc单元130的输出端串并联连接至同一个充电枪口,均在本发明实施例的保护范围之内,即本发明实施例提供的多枪的充电桩电路设置有多个充电枪口。
则上述控制功率分配单元110动作,使至少一个dc/dc单元130连接至对应充电枪口,具体过程为:由控制单元检测各dc/dc单元130的输出电压,并接收到用户的功率需求,也即相应的充电枪口所接待充电设备(比如电动车)的功率需求,然后根据该输出电压以及功率需求控制功率分配单元110内相应可控开关的通断,使得相应dc/dc单元130独立输出,或者,以串联或并联形式进行输出;也即,控制单元根据dc/dc单元130的输出电压以及用户的功率需求控制功率分配单元110内相应可控开关的通断,能够实现不同的dc/dc单元130的输出端连接至相同的或者不同的充电枪口,综合考虑了每一个dc/dc单元130的出力能力以及用户的需求,因此,相对于现有技术的多模块化充电桩,本发明实施例提供的集成充电桩的利用率更高。
需要说明的是,控制单元控制dc/dc单元130的输出端连接至不同的充电枪口时,可以根据充电枪口的功率需求不同,即根据电动车的充电需求不同,而控制dc/dc单元130输出不同或者相同的电压,以及,不同或者相同的功率,视具体应用情况而定,均在本发明实施例的保护范围之内。若各dc/dc单元130独立输出,则不同的充电枪口电压(如图6所示的充电电压v1、充电电压v2、充电电压v3…充电电压vn)可以相等,也可以不等。而当多个dc/dc单元130的输出端串并联连接至同一个充电枪口时,比如控制单元通过控制功率分配单元110使不同dc/dc单元130在同一个充电枪输出功率时,则根据电动车的充电需求,需要控制并联连接的不同dc/dc单元130输出相同电压、相同功率;如图4所示,dc/dc单元1和dc/dc单元2输出电压相等、功率相等,dc/dc单元3和dc/dc单元n输出电压相等、功率相等;但各个充电枪口的输出依然是独立的,即充电电压v1、充电电压v2可以相等或者不等,输出独立。
在实际应用中,该控制功率分配单元110内的可控开关的通断的控制单元可以为:分别设置于各dc/dc单元130内部的控制器,即每个dc/dc单元130均设置有一个独立的控制器,该控制器用于检测对应dc/dc单元130的输出电压,并通过控制功率分配单元110内相应可控开关动作,实现对应dc/dc单元130的功率分配控制。
并且,以上dc/dc单元130可以是输出范围可调节的直流电源,可以自动适应电动车充电电压进行电压调节,且该dc/dc单元130的主电路可以是所有dc/dc变换拓扑电路,比如各种隔离型或非隔离型变换拓扑。而ac/dc单元120的主电路为单相或者三相整流功率因数校正整流电路,即本发明实施例提供的多枪的充电桩电路能够适用于本领域各种常见的充电桩。
本实施提供的该多枪的充电桩电路,由控制单元检测各个dc/dc单元130的输出电压,并根据各输出电压以及相应的充电枪口的功率需求,控制功率分配单元110内各可控开关的通断,即控制各dc/dc单元130的输出端连接至对应的充电枪口,实现对相应充电枪口的功率分配;也即,设置了多个充电枪口,通过控制单元及功率分配单元110对各个充电枪口进行功率分配,能够满足多个用户同时使用的需求,提高了充电桩的利用率。并且,由于本发明实施例提供的多枪的充电桩电路仅采用一个ac/dc单元120进行整流,以该ac/dc单元120的直流侧同时挂接多个dc/dc单元130,因此,其整流单元控制器及控制电路少,即无源器件少,也即其整流成本低、待机功耗小且无功损耗低。
本发明另一实施例还提供了一种多枪的充电桩电路,在上述实施例的基础上,如图3所示,功率分配单元110可以包括:使至少两个dc/dc单元130的输出端实现并联连接的并联支路210,以及,使至少两个dc/dc单元130的输出端实现串联连接的串联支路220中的至少一种;且并联支路210和串联支路220中均设置有可控开关。
参见图3,该并联支路210包括:分别连接对应dc/dc单元130输出端的正极支路和负极支路,且该正极支路与负极支路均设置有可控开关;其正极支路和负极支路上的可控开关均闭合后的等效电路如图4所示。
参见图3,该串联支路220包括:连接对应dc/dc单元130输出端不同极的支路;串联支路220上的可控开关闭合后的等效电路如图5所示。
实际应用中,该功率分配单元110的实现形式至少存在以下三种:
(1)功率分配单元110仅包括至少一个并联支路210,通过控制其正极支路和负极支路上的可控开关,能够实现将不同的dc/dc单元130的输出端连接至同一个充电枪口,此时,根据用户的功率需求,各dc/dc单元130需要输出相同电压、相同功率。
如图4所示,dc/dc单元1和dc/dc单元2输出电压相等、功率相等,dc/dc单元3和dc/dc单元n输出电压相等、功率相等;但是,充电电压v1、充电电压v2可以相等或者不等,输出独立。
(2)功率分配单元110仅包括至少一个串联支路220,通过控制其可控开关,能够实现将不同的dc/dc单元130的输出端串联连接至同一个充电枪口。
如图5所示,dc/dc单元1和dc/dc单元2的输出串联连接,dc/dc单元3和dc/dc单元n的输出串联连接;各个充电枪口的输出依然是独立的,即充电电压v1、充电电压v2可以相等或者不等。
(3)该功率分配单元110包括至少一个串联支路220以及至少一个并联支路210,能够将不同的dc/dc单元的输出端通过串并联连接至同一个充电枪口,其可控开关均闭合后的等效电路图可参照图4和图5的形式进行组合,只要保证并联的端口电压相等、功率相等即可,此处不再赘述。
在前面三种情况中任意一个的基础之上,该功率分配单元110还可以包括:使各个dc/dc单元130的输出端实现独立输出的独立支路230,该独立支路230中同样设置有可控开关,独立支路230上的可控开关闭合后的等效电路如图6所示。
若功率分配单元110还包括独立支路230,即可实现一个dc/dc单元130的输出端连接至对应的一个充电枪口,此时,各dc/dc单元130的输出电压和输出功率是根据实际应用情况而定的,例如,可以根据电动车的充电需求不同,进而控制各dc/dc单元130输出不同或者相同的电压、不同或者相同的功率,均在本发明实施例的保护范围之内;但是,如图6所示,充电电压v1、v2、v3……vn电压可以相等或者不等,输出独立。
需要说明的是,本发明实施例提供的多枪的充电桩电路内功率分配单元110的实现形式不仅限于以上所述内容,只要能实现各dc/dc单元130之间相互形成独立或者串并联模式即可,均在本发明实施例的保护范围之内;并且,由控制单元根据各dc/dc单元130的输出电压以及相应充电枪口的功率需求,控制功率分配单元110内的可控开关的通断,使得各dc/dc单元130在不同充电枪输出功率时,可以根据电动车的充电需求(即充电枪口的功率需求)不同,而控制各dc/dc单元130输出不同或者相同电压,以及,不同或者相同功率;若各dc/dc单元130在同一个充电枪输出功率,则根据电动车的充电需求不同控制各dc/dc单元130输出相同电压相同功率。
本实施例提供的一种多枪的充电桩电路,由于在功率分配单元内各支路均设置了可控开关,因此能够通过控制单元控制其可控开关的通断,实现功率分配单元在并联、串联或者独立输出之间进行切换,也即,能够实现各个dc/dc单元130之间相互形成独立或串并联关系,可根据需求功率及使用的充电枪口,控制各dc/dc单元130输出满足需求的电压以及功率,即任意调用多个dc/dc单元130进行功率输出,各个dc/dc单元130的输出电压均可调。
其余的原理与上述实施例相同,此处不再一一赘述。
本发明另一实施例还提供了一种多枪的充电桩,包括:壳体、设置于壳体内部的散热装置和如上述任一实施例提供的多枪的充电桩电路,以及设置于壳体外部的多个充电枪。该多枪的充电桩壳体内部的结构示意图如图7所示,并未对壳体进行展示;其中:
各个充电枪的输入端与多枪的充电桩电路中的各个充电枪口一一对应相连;散热装置用于对多枪的充电桩电路进行散热。
需要说明的是,现有技术中,如图2所示,其每个模块均设置了独立的风机散热结构,风机噪声叠加噪声污染大。
如图7所示,本发明实施例提供的多枪的充电桩,仅采用一个散热装置来实现对整个充电桩的散热,散热噪声低。
本发明实施例提供的一种多枪的充电桩,设置了多个充电枪,能够同时满足多个用户的需求,提高了充电桩的利用率,且相对于现有技术,极大的减少了无源器件的数量,同时减少了控制电路,节约了成本,又节省了空间。此外,本发明实施例仅利用一个散热装置进行散热,降低了多模块噪声叠加污染。
其余的原理与上述实施例相同,此处不再一一赘述。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统或系统实施例而言,由于其基本相似于方法实施例,所以描述得比较简单,相关之处参见方法实施例的部分说明即可。以上所描述的系统及系统实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
专业人员还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
起点商标作为专业知识产权交易平台,可以帮助大家解决很多问题,如果大家想要了解更多知产交易信息请点击 【在线咨询】或添加微信 【19522093243】与客服一对一沟通,为大家解决相关问题。
此文章来源于网络,如有侵权,请联系删除