一种光触媒涂料及其涂层的制作方法
2021-02-02 19:02:03|312|起点商标网
本发明属于光触媒材料
技术领域:
,具体涉及一种光触媒涂料及其涂层。
背景技术:
:随着社会的发展,社会物资得到了极大丰富。然而化工用品的大量使用,所产生的甲醛等有害气体难免对生活及工作环境带来影响,乃至诱发肌体病变,严重影响人们身体健康。光触媒也叫光催化剂,是一种以纳米级二氧化钛为代表的具有光催化功能的半导体材料的总称。早在20世纪30年代,科学家就已经发现了以氧化锌为基底的光触媒材料,将有害物质通过光催化降解为无害物质,为人类生活环境的改善带来了希望。特别1967年日本东京大学的本多建一教授的发现,打开了二氧化钛在光催化领域应用的大门,使得光触媒在生产生活环境中,大量出现,护卫人类健康。日常生活中,光触媒能有效地降解空气中有毒有害气体如甲醛等,高效净化空气;同时,能够有效杀灭多种细菌,并能将细菌或真菌释放出的毒素分解及无害化处理。目前,光触媒还存在如下问题。其一,绝大部分只能在紫外光下工作。二氧化钛光触媒的能距为3.2ev,相当于波长387.5nm的光源所带的能量,该波长落入到紫外光的波长范围中。因此,二氧化钛光触媒的使用需要对人体有害的紫外光源进行激发,使用较为不便,将其应用范围扩展到可见光区域成为成为亟待解决的问题。其二,光吸收效率低,利用率低。现有二氧化钛光触媒,在吸收光能的同时也反射了大部分,对于光的吸收有限,进而降低了对光能的利用率,是对电能的一种浪费。其三,自由基稳定性差,催化效率低。市面上所使用的光触媒,在光能转化成自由基的效率不高,同时自由基缺乏稳定性,进一步降低了催化效率。因此,需要一种新的复合光触媒,同时实现可见光催化以及高光量子效率,从而让光触媒进一步广泛应用于多样的生产生活场景,增加使用安全性,提高能源利用效率,最终实现环境质量的极大改善。技术实现要素:本发明为克服现有技术的不足,提供了一种光触媒涂料,包括褶皱石墨烯球载体和包覆于所述褶皱石墨烯球载体表面的二氧化钛功能层,所述褶皱石墨烯球和所述二氧化钛质量比为1:0.2~2;所述褶皱石墨烯球的id/ig小于0.01;褶皱石墨烯球为ab堆叠结构,堆叠厚度大于30层。进一步,所述纳米二氧化钛的粒径为3~6nm。进一步,所述二氧化钛功能层为经氯铂酸、硼氢化钠改性的二氧化钛。进一步,所述褶皱石墨烯球通过喷雾干燥方法得到。本发明还提供了一种光触媒涂层,光触媒涂层由所述的光触媒涂料组成,通过以下步骤制备得到:(1)将1重量份褶皱石墨烯球喷涂于基底上,制得载体层;(2)将0.2~2重量份纳米二氧化钛、0.02~0.1重量份氯铂酸、0.01~0.05重量份硼氢化钠均匀搅拌混合1~10min后,喷涂于步骤(1)中的载体层,并于室温干燥0.5~12h,制得涂料半成品;(3)将基底转移到60~100℃下保持2~6h;(4)转移到氢气体积浓度为5%的惰性气体中,于600~1200℃还原1~4h;(5)10-100w等离子体处理,处理1-10min,从而在基底上得到光触媒涂层。进一步,所述基底包括铜箔、铝箔、人工石墨膜、氮化硼薄膜。进一步,所述褶皱石墨烯球通过喷雾干燥方法得到。与现有技术相比,本发明具有以下有益效果:(1)本发明中光触媒涂料采用褶皱石墨烯球作为载体,利用高厚石墨烯层的热电子积累效应,降低石墨烯与二氧化钛势垒,增加了石墨烯热电子越过势垒的热电子数量,提高光量子效率;经氯铂酸、硼氢化钠改性的二氧化钛作为功能层,通过增强铂原子和钛原子的配位作用,降低二氧化钛带隙,硼氢化钠以及氢气的还原作用增加了钛原子的价态结构,同样降低二氧化钛带隙,两者共同作用,多角度降低带隙,促进二氧化钛对光波长的扩展,最终实现了可见光以及近红外光的光触媒;(2)本发明中的褶皱石墨烯球具有褶皱形态,增加了相对比表面积,减少了光的反射,增强了对光利用率;(3)本发明中的褶皱石墨烯球id/ig小于0.01,有着极低的表面缺陷,而且褶皱石墨烯球为ab堆叠结构,堆叠厚度大于30层,不仅具有热电子积累效应,而且对二氧化钛光催化过程中产生的自由基具有稳定作用,增强了自由基寿命,提高自由基催化效率等;(4)本发明中的光触媒涂料在经等离子体处理后,涂料表面和水分子以及氧气分子更亲和,高价态热电子可以很快转化成活性自由基,并被无缺陷石墨烯稳定住,提高热电子向自由基的转化效率;(5)本发明中二氧化钛起到主要的催化活性位点的作用,在其上形成大量的高活性自由基,氯铂酸一方面进一步刻蚀二氧化钛纳米粒子,增加活性位点和比表面积,另一方面增强铂原子和钛原子的配位作用,降低带隙,扩展光催化波长。具体实施方式为了使本发明的目的和效果变得更加明白,下面结合具体实施例进一步详述本发明。实施例1一种光触媒涂料,包括褶皱石墨烯球载体和包覆于所述褶皱石墨烯球载体表面的二氧化钛功能层。所述褶皱石墨烯球通过喷雾干燥方法得到,褶皱石墨烯球为ab堆叠结构,堆叠厚度为35层,id/ig为0.005。纳米二氧化钛的粒径为3~6nm,且褶皱石墨烯球和二氧化钛质量比为1:0.2。本发明还提供了一种光触媒涂层及其制备方法,光触媒涂层由上述光触媒涂料组成,包含以下制备步骤:(1)将1重量份褶皱石墨烯球喷涂于铜箔基底上,制得载体层;(2)将0.2重量份纳米二氧化钛、0.02重量份氯铂酸、0.01重量份硼氢化钠均匀搅拌混合1min后,喷涂于步骤(1)中的载体层,并于室温干燥0.5h,制得涂料半成品;(3)将基底转移到60℃下保持2h;(4)转移到氢气体积浓度为5%的惰性气体中,于600℃还原1h;(5)10w等离子体处理,处理1min,从而在基底上得到光触媒涂层。对所制得的上述光触媒涂层在可见光波长范围(460~510nm)内,采用qb/t2761-2006中的方法检测上述膜对甲醛的降解率;检测结果如表1所示。实施例2一种光触媒涂料,包括褶皱石墨烯球载体和包覆于所述褶皱石墨烯球载体表面的二氧化钛功能层。所述褶皱石墨烯球通过喷雾干燥方法得到,褶皱石墨烯球为ab堆叠结构,堆叠厚度为35层,id/ig为0.005。纳米二氧化钛的粒径为3~6nm,且褶皱石墨烯球和二氧化钛质量比为1:2。本发明还提供了一种光触媒涂层及其制备方法,光触媒涂层由上述光触媒涂料组成,包含以下制备步骤:(1)将1重量份褶皱石墨烯球喷涂于铝箔基底上,制得载体层;(2)将2重量份纳米二氧化钛、0.1重量份氯铂酸、0.05重量份硼氢化钠均匀搅拌混合10min后,喷涂于步骤(1)中的载体层,并于室温干燥12h,制得涂料半成品;(3)将基底转移到100℃下保持6h;(4)转移到氢气体积浓度为5%的惰性气体中,于1200℃还原4h;(5)100w等离子体处理,处理10min,从而在基底上得到光触媒涂层。所制得的上述光触媒涂层在可见光波长范围(460~510nm)内,在可见光波长范围(460~510nm)内,采用qb/t2761-2006中的方法检测上述膜对甲醛的降解率;检测结果如表1所示。实施例3一种光触媒涂料,包括褶皱石墨烯球载体和包覆于所述褶皱石墨烯球载体表面的二氧化钛功能层。所述褶皱石墨烯球通过喷雾干燥方法得到,褶皱石墨烯球为ab堆叠结构,堆叠厚度为35层,id/ig为0.005。纳米二氧化钛的粒径为3~6nm,且褶皱石墨烯球和二氧化钛质量比为1:0.5。本发明还提供了一种光触媒涂层及其制备方法,光触媒涂层由上述光触媒涂料组成,包含以下制备步骤:(1)将1重量份褶皱石墨烯球喷涂于人工石墨膜基底上,制得载体层;(2)将0.5重量份纳米二氧化钛、0.05重量份氯铂酸、0.02重量份硼氢化钠均匀搅拌混合2min后,喷涂于步骤(1)中的载体层,并于室温干燥1h,制得涂料半成品;(3)将基底转移到80℃下保持3h;(4)转移到氢气体积浓度为5%的惰性气体中,于800℃还原2h;(5)50w等离子体处理,处理5min,从而在基底上得到光触媒涂层。所制得的上述光触媒涂层在可见光波长范围(460~510nm)内,在可见光波长范围(460~510nm)内,采用qb/t2761-2006中的方法检测上述膜对甲醛的降解率;检测结果如表1所示。实施例4一种光触媒涂料,包括褶皱石墨烯球载体和包覆于所述褶皱石墨烯球载体表面的二氧化钛功能层。所述褶皱石墨烯球通过喷雾干燥方法得到,褶皱石墨烯球为ab堆叠结构,堆叠厚度为35层,id/ig为0.005。纳米二氧化钛的粒径为3~6nm,且褶皱石墨烯球和二氧化钛质量比为1:1。本发明还提供了一种光触媒涂层及其制备方法,光触媒涂层由上述光触媒涂料组成,包含以下制备步骤:(1)将1重量份褶皱石墨烯球喷涂于氮化硼薄膜基底上,制得载体层;(2)将1重量份纳米二氧化钛、0.08重量份氯铂酸、0.03重量份硼氢化钠均匀搅拌混合5min后,喷涂于步骤(1)中的载体层,并于室温干燥5h,制得涂料半成品;(3)将基底转移到90℃下保持5h;(4)转移到氢气体积浓度为5%的惰性气体中,于1000℃还原3h;(5)80w等离子体处理,处理8min,从而在基底上得到光触媒涂层。所制得的上述光触媒涂层在可见光波长范围(460~510nm)内,在可见光波长范围(460~510nm)内,采用qb/t2761-2006中的方法检测上述膜对甲醛的降解率;检测结果如表1所示。实施例5一种光触媒涂料,包括褶皱石墨烯球载体和包覆于所述褶皱石墨烯球载体表面的二氧化钛功能层。所述褶皱石墨烯球通过喷雾干燥方法得到,褶皱石墨烯球为ab堆叠结构,堆叠厚度为35层,id/ig为0.005。纳米二氧化钛的粒径为3~6nm,且褶皱石墨烯球和二氧化钛质量比为1:1.5。本发明还提供了一种光触媒涂层及其制备方法,光触媒涂层由上述光触媒涂料组成,包含以下制备步骤:(1)将1重量份褶皱石墨烯球喷涂于铜箔基底上,制得载体层;(2)将1.5重量份纳米二氧化钛、0.08重量份氯铂酸、0.04重量份硼氢化钠均匀搅拌混合8min后,喷涂于步骤(1)中的载体层,并于室温干燥8h,制得涂料半成品;(3)将基底转移到80℃下保持4h;(4)转移到氢气体积浓度为5%的惰性气体中,于800℃还原3h;(5)80w等离子体处理,处理8min,从而在基底上得到光触媒涂层。所制得的上述光触媒涂层在可见光波长范围(460~510nm)内,在可见光波长范围(460~510nm)内,采用qb/t2761-2006中的方法检测上述膜对甲醛的降解率;检测结果如表1所示。实施例6采用实施例5中光触媒涂层的制备步骤,仅改变其中褶皱石墨烯球的参数,包括id/ig、堆叠结构、堆叠厚度,制得相应的光触媒涂层,并对其降解性能进行实验,结果如表2所示;对实施例5中制得的光触媒涂料进行甲醛的降解率检测时,设置不同波长的光进行比照,结果如表3所示。表1实施例1-5测试结果表2实施例6测试结果通过分析表2中实验数据,发现褶皱石墨烯球的参数,包括id/ig、堆叠结构、堆叠厚度对最终得到光触媒涂层的性能都有较大的影响。随着id/ig值的减小,堆叠厚度的增加,光触媒涂层对甲醛的降解效率越高,即性能越好。表3实施例6测试结果不同时间点甲醛降解率红外光近红外光可见光紫外光12h8%17%23%32%24h16%34%46%64%36h25%51%69%96%48h34%68%92%100%通过分析表3中实验数据,发现本发明所制备的光触媒涂层在可见光、近红外光及红外光下均能够发挥降解功能,尤其是在可见光下,其降解性能在48h时间点十分接近于应用在紫外光下的性能。由此可见,本发明在可见光下能够广泛高效应用。当前第1页1 2 3 
技术领域:
,具体涉及一种光触媒涂料及其涂层。
背景技术:
:随着社会的发展,社会物资得到了极大丰富。然而化工用品的大量使用,所产生的甲醛等有害气体难免对生活及工作环境带来影响,乃至诱发肌体病变,严重影响人们身体健康。光触媒也叫光催化剂,是一种以纳米级二氧化钛为代表的具有光催化功能的半导体材料的总称。早在20世纪30年代,科学家就已经发现了以氧化锌为基底的光触媒材料,将有害物质通过光催化降解为无害物质,为人类生活环境的改善带来了希望。特别1967年日本东京大学的本多建一教授的发现,打开了二氧化钛在光催化领域应用的大门,使得光触媒在生产生活环境中,大量出现,护卫人类健康。日常生活中,光触媒能有效地降解空气中有毒有害气体如甲醛等,高效净化空气;同时,能够有效杀灭多种细菌,并能将细菌或真菌释放出的毒素分解及无害化处理。目前,光触媒还存在如下问题。其一,绝大部分只能在紫外光下工作。二氧化钛光触媒的能距为3.2ev,相当于波长387.5nm的光源所带的能量,该波长落入到紫外光的波长范围中。因此,二氧化钛光触媒的使用需要对人体有害的紫外光源进行激发,使用较为不便,将其应用范围扩展到可见光区域成为成为亟待解决的问题。其二,光吸收效率低,利用率低。现有二氧化钛光触媒,在吸收光能的同时也反射了大部分,对于光的吸收有限,进而降低了对光能的利用率,是对电能的一种浪费。其三,自由基稳定性差,催化效率低。市面上所使用的光触媒,在光能转化成自由基的效率不高,同时自由基缺乏稳定性,进一步降低了催化效率。因此,需要一种新的复合光触媒,同时实现可见光催化以及高光量子效率,从而让光触媒进一步广泛应用于多样的生产生活场景,增加使用安全性,提高能源利用效率,最终实现环境质量的极大改善。技术实现要素:本发明为克服现有技术的不足,提供了一种光触媒涂料,包括褶皱石墨烯球载体和包覆于所述褶皱石墨烯球载体表面的二氧化钛功能层,所述褶皱石墨烯球和所述二氧化钛质量比为1:0.2~2;所述褶皱石墨烯球的id/ig小于0.01;褶皱石墨烯球为ab堆叠结构,堆叠厚度大于30层。进一步,所述纳米二氧化钛的粒径为3~6nm。进一步,所述二氧化钛功能层为经氯铂酸、硼氢化钠改性的二氧化钛。进一步,所述褶皱石墨烯球通过喷雾干燥方法得到。本发明还提供了一种光触媒涂层,光触媒涂层由所述的光触媒涂料组成,通过以下步骤制备得到:(1)将1重量份褶皱石墨烯球喷涂于基底上,制得载体层;(2)将0.2~2重量份纳米二氧化钛、0.02~0.1重量份氯铂酸、0.01~0.05重量份硼氢化钠均匀搅拌混合1~10min后,喷涂于步骤(1)中的载体层,并于室温干燥0.5~12h,制得涂料半成品;(3)将基底转移到60~100℃下保持2~6h;(4)转移到氢气体积浓度为5%的惰性气体中,于600~1200℃还原1~4h;(5)10-100w等离子体处理,处理1-10min,从而在基底上得到光触媒涂层。进一步,所述基底包括铜箔、铝箔、人工石墨膜、氮化硼薄膜。进一步,所述褶皱石墨烯球通过喷雾干燥方法得到。与现有技术相比,本发明具有以下有益效果:(1)本发明中光触媒涂料采用褶皱石墨烯球作为载体,利用高厚石墨烯层的热电子积累效应,降低石墨烯与二氧化钛势垒,增加了石墨烯热电子越过势垒的热电子数量,提高光量子效率;经氯铂酸、硼氢化钠改性的二氧化钛作为功能层,通过增强铂原子和钛原子的配位作用,降低二氧化钛带隙,硼氢化钠以及氢气的还原作用增加了钛原子的价态结构,同样降低二氧化钛带隙,两者共同作用,多角度降低带隙,促进二氧化钛对光波长的扩展,最终实现了可见光以及近红外光的光触媒;(2)本发明中的褶皱石墨烯球具有褶皱形态,增加了相对比表面积,减少了光的反射,增强了对光利用率;(3)本发明中的褶皱石墨烯球id/ig小于0.01,有着极低的表面缺陷,而且褶皱石墨烯球为ab堆叠结构,堆叠厚度大于30层,不仅具有热电子积累效应,而且对二氧化钛光催化过程中产生的自由基具有稳定作用,增强了自由基寿命,提高自由基催化效率等;(4)本发明中的光触媒涂料在经等离子体处理后,涂料表面和水分子以及氧气分子更亲和,高价态热电子可以很快转化成活性自由基,并被无缺陷石墨烯稳定住,提高热电子向自由基的转化效率;(5)本发明中二氧化钛起到主要的催化活性位点的作用,在其上形成大量的高活性自由基,氯铂酸一方面进一步刻蚀二氧化钛纳米粒子,增加活性位点和比表面积,另一方面增强铂原子和钛原子的配位作用,降低带隙,扩展光催化波长。具体实施方式为了使本发明的目的和效果变得更加明白,下面结合具体实施例进一步详述本发明。实施例1一种光触媒涂料,包括褶皱石墨烯球载体和包覆于所述褶皱石墨烯球载体表面的二氧化钛功能层。所述褶皱石墨烯球通过喷雾干燥方法得到,褶皱石墨烯球为ab堆叠结构,堆叠厚度为35层,id/ig为0.005。纳米二氧化钛的粒径为3~6nm,且褶皱石墨烯球和二氧化钛质量比为1:0.2。本发明还提供了一种光触媒涂层及其制备方法,光触媒涂层由上述光触媒涂料组成,包含以下制备步骤:(1)将1重量份褶皱石墨烯球喷涂于铜箔基底上,制得载体层;(2)将0.2重量份纳米二氧化钛、0.02重量份氯铂酸、0.01重量份硼氢化钠均匀搅拌混合1min后,喷涂于步骤(1)中的载体层,并于室温干燥0.5h,制得涂料半成品;(3)将基底转移到60℃下保持2h;(4)转移到氢气体积浓度为5%的惰性气体中,于600℃还原1h;(5)10w等离子体处理,处理1min,从而在基底上得到光触媒涂层。对所制得的上述光触媒涂层在可见光波长范围(460~510nm)内,采用qb/t2761-2006中的方法检测上述膜对甲醛的降解率;检测结果如表1所示。实施例2一种光触媒涂料,包括褶皱石墨烯球载体和包覆于所述褶皱石墨烯球载体表面的二氧化钛功能层。所述褶皱石墨烯球通过喷雾干燥方法得到,褶皱石墨烯球为ab堆叠结构,堆叠厚度为35层,id/ig为0.005。纳米二氧化钛的粒径为3~6nm,且褶皱石墨烯球和二氧化钛质量比为1:2。本发明还提供了一种光触媒涂层及其制备方法,光触媒涂层由上述光触媒涂料组成,包含以下制备步骤:(1)将1重量份褶皱石墨烯球喷涂于铝箔基底上,制得载体层;(2)将2重量份纳米二氧化钛、0.1重量份氯铂酸、0.05重量份硼氢化钠均匀搅拌混合10min后,喷涂于步骤(1)中的载体层,并于室温干燥12h,制得涂料半成品;(3)将基底转移到100℃下保持6h;(4)转移到氢气体积浓度为5%的惰性气体中,于1200℃还原4h;(5)100w等离子体处理,处理10min,从而在基底上得到光触媒涂层。所制得的上述光触媒涂层在可见光波长范围(460~510nm)内,在可见光波长范围(460~510nm)内,采用qb/t2761-2006中的方法检测上述膜对甲醛的降解率;检测结果如表1所示。实施例3一种光触媒涂料,包括褶皱石墨烯球载体和包覆于所述褶皱石墨烯球载体表面的二氧化钛功能层。所述褶皱石墨烯球通过喷雾干燥方法得到,褶皱石墨烯球为ab堆叠结构,堆叠厚度为35层,id/ig为0.005。纳米二氧化钛的粒径为3~6nm,且褶皱石墨烯球和二氧化钛质量比为1:0.5。本发明还提供了一种光触媒涂层及其制备方法,光触媒涂层由上述光触媒涂料组成,包含以下制备步骤:(1)将1重量份褶皱石墨烯球喷涂于人工石墨膜基底上,制得载体层;(2)将0.5重量份纳米二氧化钛、0.05重量份氯铂酸、0.02重量份硼氢化钠均匀搅拌混合2min后,喷涂于步骤(1)中的载体层,并于室温干燥1h,制得涂料半成品;(3)将基底转移到80℃下保持3h;(4)转移到氢气体积浓度为5%的惰性气体中,于800℃还原2h;(5)50w等离子体处理,处理5min,从而在基底上得到光触媒涂层。所制得的上述光触媒涂层在可见光波长范围(460~510nm)内,在可见光波长范围(460~510nm)内,采用qb/t2761-2006中的方法检测上述膜对甲醛的降解率;检测结果如表1所示。实施例4一种光触媒涂料,包括褶皱石墨烯球载体和包覆于所述褶皱石墨烯球载体表面的二氧化钛功能层。所述褶皱石墨烯球通过喷雾干燥方法得到,褶皱石墨烯球为ab堆叠结构,堆叠厚度为35层,id/ig为0.005。纳米二氧化钛的粒径为3~6nm,且褶皱石墨烯球和二氧化钛质量比为1:1。本发明还提供了一种光触媒涂层及其制备方法,光触媒涂层由上述光触媒涂料组成,包含以下制备步骤:(1)将1重量份褶皱石墨烯球喷涂于氮化硼薄膜基底上,制得载体层;(2)将1重量份纳米二氧化钛、0.08重量份氯铂酸、0.03重量份硼氢化钠均匀搅拌混合5min后,喷涂于步骤(1)中的载体层,并于室温干燥5h,制得涂料半成品;(3)将基底转移到90℃下保持5h;(4)转移到氢气体积浓度为5%的惰性气体中,于1000℃还原3h;(5)80w等离子体处理,处理8min,从而在基底上得到光触媒涂层。所制得的上述光触媒涂层在可见光波长范围(460~510nm)内,在可见光波长范围(460~510nm)内,采用qb/t2761-2006中的方法检测上述膜对甲醛的降解率;检测结果如表1所示。实施例5一种光触媒涂料,包括褶皱石墨烯球载体和包覆于所述褶皱石墨烯球载体表面的二氧化钛功能层。所述褶皱石墨烯球通过喷雾干燥方法得到,褶皱石墨烯球为ab堆叠结构,堆叠厚度为35层,id/ig为0.005。纳米二氧化钛的粒径为3~6nm,且褶皱石墨烯球和二氧化钛质量比为1:1.5。本发明还提供了一种光触媒涂层及其制备方法,光触媒涂层由上述光触媒涂料组成,包含以下制备步骤:(1)将1重量份褶皱石墨烯球喷涂于铜箔基底上,制得载体层;(2)将1.5重量份纳米二氧化钛、0.08重量份氯铂酸、0.04重量份硼氢化钠均匀搅拌混合8min后,喷涂于步骤(1)中的载体层,并于室温干燥8h,制得涂料半成品;(3)将基底转移到80℃下保持4h;(4)转移到氢气体积浓度为5%的惰性气体中,于800℃还原3h;(5)80w等离子体处理,处理8min,从而在基底上得到光触媒涂层。所制得的上述光触媒涂层在可见光波长范围(460~510nm)内,在可见光波长范围(460~510nm)内,采用qb/t2761-2006中的方法检测上述膜对甲醛的降解率;检测结果如表1所示。实施例6采用实施例5中光触媒涂层的制备步骤,仅改变其中褶皱石墨烯球的参数,包括id/ig、堆叠结构、堆叠厚度,制得相应的光触媒涂层,并对其降解性能进行实验,结果如表2所示;对实施例5中制得的光触媒涂料进行甲醛的降解率检测时,设置不同波长的光进行比照,结果如表3所示。表1实施例1-5测试结果表2实施例6测试结果通过分析表2中实验数据,发现褶皱石墨烯球的参数,包括id/ig、堆叠结构、堆叠厚度对最终得到光触媒涂层的性能都有较大的影响。随着id/ig值的减小,堆叠厚度的增加,光触媒涂层对甲醛的降解效率越高,即性能越好。表3实施例6测试结果不同时间点甲醛降解率红外光近红外光可见光紫外光12h8%17%23%32%24h16%34%46%64%36h25%51%69%96%48h34%68%92%100%通过分析表3中实验数据,发现本发明所制备的光触媒涂层在可见光、近红外光及红外光下均能够发挥降解功能,尤其是在可见光下,其降解性能在48h时间点十分接近于应用在紫外光下的性能。由此可见,本发明在可见光下能够广泛高效应用。当前第1页1 2 3 
起点商标作为专业知识产权交易平台,可以帮助大家解决很多问题,如果大家想要了解更多知产交易信息请点击 【在线咨询】或添加微信 【19522093243】与客服一对一沟通,为大家解决相关问题。
此文章来源于网络,如有侵权,请联系删除
热门咨询
tips