HI,欢迎来到起点商标网!
24小时服务QQ:2880605093

一种具有高交联性双膜层结构的防雾抗霜涂层的制备方法与流程

2021-02-02 19:02:08|354|起点商标网

本发明涉及防雾康霜涂层领域,具体是指一种具有高交联性双膜层结构的防雾抗霜涂层的制备方法。



背景技术:

雾化现象日常可见,温差变化使得透明材料在使用过程中容易结雾,如眼镜镜片起雾、车灯内部和车窗结雾、防护服面罩或医用喉管胃窥镜结雾等,当透明基底表面温度低于周围湿热水蒸气的露点时,饱和的水蒸汽会骤冷并凝结成水珠或不规则的水质层黏附在基底表面,物体反射光经过水滴时发生折射,导致透明基底的透光率降低,从而影响人们的生活与工作。例如为了避免医护人员暴露在高传染性细菌及病毒环境中,医护人员工作中佩戴防护服时就经常受到眼罩起雾的困扰,特别是2020年疫情防控一线的医护人员,急需一种具有良好防雾效果的防护面罩,为其工作带来便利。

20世纪60年代国外开始关注防雾玻璃的研究,现今世界许多发达国家知名从事防雾玻璃的研究,像英国pilkington公司、日本toto公司、美国fsicoatingtechnologies公司等。日本率先研发了光催化tio2类型的防雾膜层,但此方法需要复杂的程序来制备tio2层结构,利用紫外光照射来获得表面超亲水性,使雾滴凝结平铺在透明基底表面而不产生影响透过率的不均匀水质层,从而达到防雾的效果。这种策略制备的防雾膜层在紫外光照射下可使水滴接触角接近零度,也具有较好的机械性能,但其防雾效果对紫外光具有依赖性,需要重复照射使涂层恢复超亲水的状态,而且受到光照强度、温度、表面清洁度等诸多因素的影响,亲水性能稳定性差,距离实际应用较远。国内防雾界面的研究起步较晚但取得了巨大进展,至今防雾相关专利和技术成果近四千项,主流的解决方案主要有两种,一是物理加热方法或附加超声分散的方法,该方法技术成本较高,耗能高,需要较多的电路元件,且加热法时效性差,需要一段时间才能使基底升温达到防雾效果。二是在透明基材表面涂敷一层防雾材料,是解决结雾的一种比较简单方便和有效的办法,其中有三种制备防雾表面的策略,即:(1)湿法防雾:利用超亲水性表面,将液滴平摊成水膜;(2)干法防雾:构建超疏水性表面,使得液滴从功能表面滚落;(3)两性吸水性防雾:即构建亲水/疏水平衡的表面,将液滴吸收到涂层内部。此外,针对当前流行的多学科交叉、多功能混合的科研形式,很多研究者采用不同的策略,去实现多功能表面的构建,如防雾与抗霜的结合、防雾与自清洁的结合、防雾与抗菌的结合等等。

亲水性表面防雾效果显著,但抗霜效果不佳,在亲水性表面形成的水质层在低温条件下难免会凝结成冰层,降低基底的透过率;疏水性表面虽然有较好的抗霜效果,但其表面结构易受到破坏,水滴在微纳结构间密封的空气膜会被没有及时弹走的水滴吸收,防雾效果减弱。两性可润湿吸水性表面可以较好兼顾防雾和抗霜性,当基底温度低于周围水蒸气露点时,水蒸气冷凝液化,雾滴被涂层及时吸收;水蒸气接触涂层的瞬间状态对涂层抗霜功能的实现至关重要,当基底温度低于周围水蒸气凝点时,水蒸气遇冷液化后被吸收到涂层的内部,转化为介于自由态和结晶态间的中间态水,不会在涂层表面和内部形成冰晶,从而达到抗霜的效果。构建一个高温防雾低温抗霜全天候有效的防雾抗霜涂层具有一定的挑战性,传统用于表面改性的高分子涂层普遍存在着耐刮差性不强、与基底结合力较小或不耐水浸、防雾效果不持久等缺点。

因此,如今的行业需要一种具有更好效果的防水康霜涂层,这也是行业内各个企业的研发重点。



技术实现要素:

本发明的目的在于克服上述缺陷,提供一种具有高交联性双膜层结构的防雾抗霜涂层的制备方法,能够制备一种适用于病毒防护服眼罩、生物或化学实验护目镜、医用喉管胃窥镜等光学镜片的防雾涂层,克服传统的高分子防雾抗霜涂层机械强度小、与基底黏附性能差的应用问题。

本发明的目的通过下述技术方案实现:

一种具有高交联性双膜层结构的防雾抗霜涂层的制备方法,包括以下步骤:

(1)制备光引发剂小分子:以丙烯酰氯烯烃衍生物或丙烯酰氯烯烃衍生物以及二苯甲酮类光引发剂为原料进行酯化反应以得到光引发剂小分子;

(2)制备光引发剂大分子:将光引发剂小分子与含双键的亲水单体或疏水单体在80℃条件下反应8-10h,热引发自由基聚合后得到光引发剂大分子;

(3)在基底表面制备交联层:选择基底,并将光引发剂大分子涂覆在基底表面,并避光放置于80℃的烤箱中去除溶剂,得到表面附着有交联层的基底;

(4)制备预聚体大分子:将亲水单体或疏水单体与交联剂加入预聚溶液中,并置于80℃的氮气环境中2-3h,热引发交联后得到预聚体大分子;

(5)在基底表面制备防雾康霜涂层:将预聚体大分子通过旋涂、刷涂或浸涂的方式涂覆在交联层的表面,并在365nm波长的紫外线下光照0.5h,光引发交联聚合后将基底放置于80℃的烤箱中加热8-12h,最后将基底放入80℃的真空烘箱中烘干即得到防雾康霜涂层。

步骤(1)中醇化反应的溶剂为无水n,n-二甲基甲酰胺、丙酮或四氢呋喃中的任意一种,反应环境为冰浴或氮气环境,反应时间为2-3h;

丙烯酰氯烯烃衍生物为甲基丙烯酰氯或丁烯酰氯;

丙烯酰氯烯烃衍生物为4-羟基-二苯甲酮、4,4'-二羟基二苯甲酮或2,4'-二羟基二苯甲酮中的任意一种。

步骤(2)中的光引发剂大分子的分子量大于80kda,光引发剂大分子的摩尔百分含量为1%-20%。

步骤(3)中的基底为具有良好光学性能的无机或有机材料,附着于基底表面的交联层的厚度为300-500nm。

所述的亲水单体为n-乙烯基-2-吡咯烷酮、甲基丙烯酸丙磺酸、丙烯酸、甲基丙烯酸、丙烯酰胺、甲基丙烯酸乙二醇酯或甲基丙烯酸二甲氨基乙酯中的任意一种;

疏水单体为甲基丙烯酸甲酯、甲基丙烯酸丙酯或苯乙烯中的任意一种;

交联剂为二甲基丙烯酸乙二醇酯或n,n'-亚甲基双丙烯酰胺,预聚溶液为丙酮、异丙醇、n,n-二甲基甲酰胺、丁醇或四氢呋喃中的任意一种。

步骤(4)中所述预聚体大分子中的亲水单体和疏水单体占的比例为9:1或4:1或7:3或6:4或1:1,交联剂占总摩尔量的0.5-10%,材料接触角为20°-85°;所述预聚体大分子的硬度大于2.5gpa。

步骤(5)中该防雾康霜涂层的厚度为0.5-10μm。

本发明较现有技术相比,具有以下优点及有益效果:

本发明能够制备一种适用于病毒防护服眼罩、生物或化学实验护目镜、医用喉管胃窥镜等光学镜片的防雾涂层,克服传统的高分子防雾抗霜涂层机械强度小、与基底黏附性能差的应用问题。

具体实施方式

下面结合实施例对本发明作进一步地详细说明,但本发明的实施方式并不限于此。

实施例1

一种具有高交联性双膜层结构的防雾抗霜涂层的制备方法,包括以下步骤:

(1)将2,4'-二羟基二苯甲酮(10g,50mmol)和三乙胺(10ml,75mmol),置于25ml无水thf(四氢呋喃)中冰浴、氮气保护条件下反应,后逐滴加入丙烯酰氯(10ml,75mmol),其中的三乙胺作为缚酸剂。反应2h后过滤沉淀,旋蒸上清液,残渣置于25ml乙酸乙酯中,溶液分别用0.1m的hcl溶液、饱和nahco3溶液和饱和nacl溶液清洗,分层后用分液漏斗分离有机相,有机层在无水na2so4中干燥,后用乙酸乙酯淋洗无水na2so4中残留的样品,旋蒸去除溶剂,真空干燥后得到光引发剂小分子。

(2)以甲基丙烯酸甲酯(2ml,17.5mmol)作为亲水单体与光引发剂小分子(0.2g,2.6mmol),加入偶氮异丁氰(0.02g)后通过热引发自由基聚合8h形成分子量为100kda的光引发剂大分子。

(3)将配制的光引发剂大分子(20μl,wt%=20%)利用旋涂方法(1000r/s,5s)涂敷在玻璃表面,后将该玻璃基底避光放置于80℃烘箱中12h,从而除去溶剂得到附着有交联层玻璃基底。

(4)将丙烯酸(0.6ml)作为亲水单体,将甲基丙烯酸甲酯(0.4ml)作为疏水单体,将二甲基丙烯酸乙二醇酯(0.02ml)作为交联剂,将n,n-二甲基甲酰胺作为预聚溶液,并将亲水单体、疏水单体以及交联剂加入预聚物溶液(wt%=20%),在80℃的加热条件下进行热引发交联2h,形成具有空间网状结构的大分子,即预聚体大分子。

(5)在基底表面制备防雾康霜涂层:利用旋涂方法(800r/s,5s)将预聚体涂敷到交联层表面,控制防雾抗霜涂层的厚度为0.5-10μm。

在365nm波长的紫外灯下光照0.5h,再次引发交联聚合。后将光引发后含有功能层的玻璃基底放置在80℃烘箱中12h,使反应完全进行,最后将基底放入80℃的真空烘箱中除去溶剂和未反应的单体分子,即得到防雾康霜涂层。

对通过实施例1制备的防雾康霜涂层进行防雾抗霜测试,具有良好的防雾抗霜效果;按照iso-2409划格法测试膜层的附着力性能,结果为介于0-1级,表现出较强的附着效果;涂层负载100g砝码在2000目的纱布上以1.5cm/s的速度滑动15cm,涂层表面完好,表现出较强的耐刮差性能,测试涂层硬度大于2.4gpa;将涂覆涂层的玻璃在自来水中浸泡30min,涂层无过度溶胀现象,在80℃的烘箱中干燥15min后仍具有良好的防雾效果。

实施例2

具体步骤为:

(1)将2,4'-二羟基二苯甲酮(10g,50mmol)和三乙胺(10ml,75mmol),置于25ml无水thf(四氢呋喃)中冰浴、氮气保护条件下反应,后逐滴加入丙烯酰氯(10ml,75mmol),其中的三乙胺作为缚酸剂。反应2h后过滤沉淀,旋蒸上清液,残渣置于25ml乙酸乙酯中,溶液分别用0.1m的hcl溶液、饱和nahco3溶液和饱和nacl溶液清洗,分层后用分液漏斗分离有机相,有机层在无水na2so4中干燥,后用乙酸乙酯淋洗无水na2so4中残留的样品,旋蒸去除溶剂,真空干燥后得到光引发剂小分子。

(2)以甲基丙烯酸甲酯(2ml,17.5mmol)作为亲水单体与光引发剂小分子(0.2g,2.6mmol),加入偶氮异丁氰(0.02g)后通过热引发自由基聚合8h形成分子量为100kda的光引发剂大分子。

(3)将配制的光引发剂大分子(20μl,wt%=20%)利用旋涂方法(1000r/s,5s)涂敷在玻璃表面,后将该玻璃基底避光放置于80℃烘箱中12h,从而除去溶剂得到附着有交联层玻璃基底。

(4)将乙烯基吡咯烷酮(0.6ml)作为亲水单体,将苯乙烯(0.4ml)作为疏水单体,将二甲基丙烯酸乙二醇酯(0.02ml)作为交联剂,将n,n-二甲基甲酰胺作为预聚溶液,并将亲水单体、疏水单体以及交联剂加入预聚物溶液(wt%=20%),在80℃的加热条件下进行热引发交联2h,形成具有空间网状结构的大分子,即预聚体大分子。

(5)在基底表面制备防雾康霜涂层:利用旋涂方法(800r/s,5s)将预聚体涂敷到交联层表面,控制防雾抗霜涂层的厚度为0.5-10μm。

在365nm波长的紫外灯下光照0.5h,再次引发交联聚合。后将光引发后含有功能层的玻璃基底放置在80℃烘箱中12h,使反应完全进行,最后将基底放入80℃的真空烘箱中除去溶剂和未反应的单体分子,即得到防雾康霜涂层。

对通过实施例2制备的防雾康霜涂层进行防雾抗霜测试,具有良好的防雾抗霜效果;按照iso-2409划格法测试膜层的附着力性能,结果为介于0-1级,表现出较强的附着效果;涂层负载100g砝码在2000目的纱布上以1.5cm/s的速度滑动15cm,涂层表面完好,表现出较强的耐刮差性能,测试涂层硬度大于2.4gpa;将涂覆涂层的玻璃在自来水中浸泡30min,涂层无过度溶胀现象,在80℃的烘箱中干燥15min后仍具有良好的防雾效果。

实施例3

具体步骤为:

(1)将4-羟基二苯甲酮(10g,50mmol)和三乙胺(10ml,75mmol),置于25ml无水thf(四氢呋喃)中冰浴、氮气保护条件下反应,后逐滴加入丙烯酰氯(10ml,75mmol),其中的三乙胺作为缚酸剂。反应2h后过滤沉淀,旋蒸上清液,残渣置于25ml乙酸乙酯中,溶液分别用0.1m的hcl溶液、饱和nahco3溶液和饱和nacl溶液清洗,分层后用分液漏斗分离有机相,有机层在无水na2so4中干燥,后用乙酸乙酯淋洗无水na2so4中残留的样品,旋蒸去除溶剂,真空干燥后得到光引发剂小分子。

(2)以甲基丙烯酸羟乙酯(2ml,17.5mmol)作为亲水单体与光引发剂小分子(0.2g,2.6mmol),加入偶氮异丁氰(0.02g)后通过热引发自由基聚合10h形成分子量为120kda的光引发剂大分子。

(3)将配制的光引发剂大分子(20μl,wt%=20%)利用旋涂方法(1000r/s,5s)涂敷在玻璃表面,后将该玻璃基底避光放置于80℃烘箱中12h,从而除去溶剂得到附着有交联层玻璃基底。

(4)将甲基丙烯酸丙磺酸(0.6ml)作为亲水单体,将苯乙烯(0.4ml)作为疏水单体,将二甲基丙烯酸乙二醇酯(0.02ml)作为交联剂,将n,n-二甲基甲酰胺作为预聚溶液,并将亲水单体、疏水单体以及交联剂加入预聚物溶液(wt%=20%),在80℃的加热条件下进行热引发交联2h,形成具有空间网状结构的大分子,即预聚体大分子。

(5)在基底表面制备防雾康霜涂层:利用旋涂方法(800r/s,5s)将预聚体涂敷到交联层表面,控制防雾抗霜涂层的厚度为0.5-10μm。

在365nm波长的紫外灯下光照0.5h,再次引发交联聚合。后将光引发后含有功能层的玻璃基底放置在80℃烘箱中12h,使反应完全进行,最后将基底放入80℃的真空烘箱中除去溶剂和未反应的单体分子,即得到防雾康霜涂层。

对通过实施例3制备的防雾康霜涂层进行防雾抗霜测试,具有良好的防雾抗霜效果;按照iso-2409划格法测试膜层的附着力性能,结果为介于0-1级,表现出较强的附着效果;涂层负载100g砝码在2000目的纱布上以1.5cm/s的速度滑动15cm,涂层表面完好,表现出较强的耐刮差性能,测试涂层硬度大于2.4gpa;将涂覆涂层的玻璃在自来水中浸泡30min,涂层无过度溶胀现象,在80℃的烘箱中干燥15min后仍具有良好的防雾效果。

如上所述,便可很好的实现本发明。

起点商标作为专业知识产权交易平台,可以帮助大家解决很多问题,如果大家想要了解更多知产交易信息请点击 【在线咨询】或添加微信 【19522093243】与客服一对一沟通,为大家解决相关问题。

此文章来源于网络,如有侵权,请联系删除

tips