HI,欢迎来到起点商标网!
24小时服务QQ:2880605093

一种基于碳点和水滑石形成的压制变色发光传感器薄膜及其制备方法与流程

2021-02-02 14:02:34|349|起点商标网
一种基于碳点和水滑石形成的压制变色发光传感器薄膜及其制备方法与流程

[0001]
本发明属于压制变色发光传感器制备技术领域,特别是涉及了一种基于碳点和水滑石形成的压制变色发光传感器薄膜及其制备方法。


背景技术:

[0002]
压致变色发光(pcl)材料在机械传感器和光电设备中具有广阔的应用前景。它们的光学信号的变化主要是通过调节分子的堆积方式而化学结构保持不变来实现的。通常,分子堆积模式由弱的分子间相互作用决定,如π-π相互作用和氢键。因此,固体中的相变通常是由于诸如剪切应力或磨削应力之类的弱驱动力而发生的,这很容易实现光学性能的显著变化。但是,目前的pcl材料存在诸如聚集猝灭(acq)效应等问题,容易受到外部环境的影响,并且由于以粉末形式存在而具有很差的自我恢复能力。因此,设计一种有效的pcl材料仍然是一个挑战。
[0003]
近年来,基于有机配合物,分子组装体和聚集诱导的发光分子的pcl材料已经取得了巨大的研究进展,但是仍然存在诸如合成步骤复杂等问题。相比之下,碳点(cds)作为一种新型发光材料,具有非常简单的合成方法,并具有优异的光学性能和良好的生物相容性,因此它是pcl材料的优良候选者。但是,大多数处于粉末状态的cds可能会产生acq效应,并且它们的分子结构在高压下会被破坏,从而导致荧光猝灭。


技术实现要素:

[0004]
本发明的目的在于提供一种溶蒸发法制备碳点/水滑石@聚乙烯醇复合膜,即为基于碳点和水滑石形成的压制变色发光传感器薄膜。
[0005]
本发明所述的基于碳点和水滑石形成的压制变色发光传感器薄膜的制备方法为:
[0006]
1)水热法制备硝酸根水滑石:将二价可溶金属盐和三价可溶金属盐溶于90-150ml去co
2
和去离子水中得到混合盐溶液,其中二价金属离子和三价金属离子的摩尔比为1-3,二价金属离子的浓度为0.01-1.6m;向三口烧瓶中缓慢滴加浓度为1-4m的naoh溶液至ph=6.5-8.7,将得到的浆液倒入高压反应釜中,在100-120℃温度下晶化15-20h;待反应釜冷却至室温后,将得到的胶状物离心并将沉淀用水洗涤4-6次,50-70℃真空干燥得到硝酸根水滑石;
[0007]
2)制备插层水滑石:将3-氨基苯磺酸0.012-0.03mol溶于100-150ml水中,然后加入1.0-2.0g硝酸根水滑石,60-80℃下,在氮气保护下搅拌70-80h,将产物离心后得到的插层水滑石用水洗涤4-6次,最终分散于水中备用;
[0008]
3)制备碳点/水滑石:将步骤2)得到的插层水滑石分散液倒入高压反应釜中,200-220℃下反应10-12h,待反应釜冷却至室温后,将产物离心,得到的碳点/水滑石用水洗涤4-6次,最终分散于水中备用;
[0009]
4)制备碳点/水滑石@聚乙烯醇复合膜:将聚乙烯醇加入水中,85-95℃下搅拌溶解
得到质量浓度为3-10%的聚乙烯醇溶液;取步骤3)得到的碳点/水滑石分散液与聚乙烯醇溶液混合,55-65℃下搅拌3-3.5h,并超声30-40min;最后将混合液倒入表面皿中,50-60℃下干燥即得碳点/水滑石@聚乙烯醇复合膜,即为基于碳点和水滑石形成的压制变色发光传感器薄膜。
[0010]
所述的二价金属离子选自mg
2+
、zn
2+
、ca
2+
中的一种或几种;所述的三价金属离子选自fe
3+
、al
3+
中的一种或两种。
[0011]
本发明制备的薄膜具有以下优点:(1)ldhs的刚性层板可抑制cds的运动,减少了非辐射跃迁;(2)具有二维纳米空间的ldhs可以分散cds并使其排列,从而抑制cds的acq效应;(3)pva和ldhs通过强的分子间氢键结合,从而可以在单重态和三重态之间实现良好的跃迁。因此,该薄膜具有cds的双重发射(荧光和磷光)行为;并且当进行压力传感测试时,该薄膜不仅在荧光方面而且在磷光方面都与压力呈线性关系。该薄膜在压膜后,可以在短时间内通过加热回到其原始状态;薄膜在uv光下照射1h后,薄膜的荧光强度和磷光强度都只降低到其原始值的80%左右;表现出良好的对于外界压力的敏感性、可逆性和光(荧光,磷光)稳定性。这种具有双重发射性能的薄膜极大地提高了传感器的灵敏度。
附图说明
[0012]
图1为本发明实施例1条件下样品的xrd图。其中横坐标为2θ,单位:度;纵坐标为强度;曲线a为ldh粉末样品,曲线b为3-氨基苯磺酸插层ldh粉末样品。
[0013]
图2为本发明实施例1制备的cds-ldhs/pva薄膜的(a)afm图和(b)3d荧光共聚焦图。
[0014]
图3为本发明实施例1制备的(a)cds-ldhs粉末和(b)cds-ldhs/pva薄膜的偏振荧光曲线和各向异性值(r)。曲线a和曲线b分别为在v-v、v-h模式下的偏振荧光曲线。曲线c为各向异性值(r)。其中横坐标为波长,单位:纳米;双纵坐标分别为荧光强度和各向异性值(r)。
[0015]
图4为本发明实施例1制备的cds-ldhs/pva薄膜的荧光、磷光发射光谱。曲线a为荧光发射光谱,曲线b为磷光发射光谱。其中横坐标为波长,单位:纳米;纵坐标为荧光、磷光强度。
[0016]
图5为本发明实施例1制备的cds-ldhs/pva薄膜和cds-ldhs粉末的磷光寿命图谱。曲线a为cds-ldhs/pva薄膜,曲线b为cds-ldhs粉末。其中横坐标为时间,单位:秒;纵坐标为磷光强度。
[0017]
图6为本发明实施例1制备的cds-ldhs/pva薄膜在不同外部压力下的(a)磷光发射光谱、(b)荧光发射光谱。其中横坐标为波长,单位:纳米;纵坐标为磷光、荧光强度。插图为cds-ldhs/pva薄膜在360nm处的强度与压力之间的线性拟合图,其中横坐标为压力,单位:mpa;纵坐标为磷光、荧光强度。
[0018]
图7为本发明实施例1制备的cds-ldhs/pva薄膜的磷光强度的可逆性实验图。其中横坐标为循环次数;纵坐标为磷光强度。
[0019]
图8为本发明实施例1制备的cds-ldhs/pva薄膜在uv光下照射1h的(a)荧光强度衰减图、(b)磷光强度衰减图。其中横坐标为时间,单位:秒;纵坐标为荧光、磷光强度。
具体实施方式
[0020]
实施例1
[0021]
1)水热法制备镁铝硝酸根水滑石:称取11.53g mg(no
3
)
2
·
6h
2
o和5.63g al(no
3
)
3
·
9h
2
o(摩尔比为3:1)溶解在90ml水后倒入三口烧瓶中;向三口烧瓶中缓慢滴加浓度为2m的naoh溶液,维持ph=8.5后结束滴定;将三口烧瓶中的溶液倒入高压反应釜中,温度100℃,时间18h;待反应釜冷却至室温后,将胶状物离心并将沉淀用水洗涤4次;将胶状物倒入表面皿中,置于50℃的真空干燥箱中,干燥成粉末后取出待用。
[0022]
2)插层水滑石的合成:称量样品(3-氨基苯磺酸0.012mol)溶于100ml水中,倒入三口烧瓶;称量1.0g镁铝硝酸根水滑石置于三口烧瓶内,80℃搅拌72h并始终通入氮气,将产物离心后得到的沉淀物用水洗涤4次,最终胶状物溶于水中备用。
[0023]
3)碳点/水滑石复合物(cds-ldhs)的合成:插层水滑石的分散液倒入高压反应釜中,温度设置为220℃,时间为10h,待反应釜冷却至室温后,将产物离心后得到的沉淀物用水洗涤4次,一部分的胶状物倒入表面皿中,并放入50℃的真空干燥箱中,干燥成粉末后待用;另一部分胶状物溶于水中备用。
[0024]
4)碳点/水滑石@聚乙烯醇(cds-ldhs/pva)薄膜的制备:将pva加入水中,90℃下水浴搅拌溶解。取步骤3)制备的cd-ldhs溶液与20ml的聚乙烯醇溶液(5wt%)混合,60℃下水浴搅拌3h,并超声30min;将cd-ldhs溶液和pva溶液混合均匀后倒入表面皿中并置于鼓风干燥箱中,50℃下干燥成薄膜。成膜后,将薄膜从表面皿上撕下,备用。
[0025]
mgal-no
3-ldh粉末的xrd图显示出明显的(003),(006)和(009)反射峰,归因于典型的no
3-ldh,d
003
基底间距为与水滑石的基本间距非常一致。3-氨基苯磺酸嵌入mgal-no
3-ldhs使基底间距从d=8.8增加到表明3-氨基苯磺酸分子成功插层到水滑石层间。afm测试中显示cds-ldh/pva薄膜呈现出光滑且平坦的表面,粗糙度为~7.6nm,三维共聚焦显微镜图像显示了薄膜的典型区域(600
×
600μm)而且可以看出薄膜表面非常均一。复合薄膜有着非常均匀的荧光强度。因此可知,cds-ldh/pva复合薄膜是均匀的。荧光偏振光谱中得到薄膜的各项异性值r为0.60(大于cds-ldh粉末的r=0.50),表明薄膜排列更有序。cds-ldhs/pva薄膜的磷光寿命(316.20ms)比cds-ldhs粉末(158.55ms)更长,因为在薄膜中,pva和ldhs通过强分子间相互作用-氢键,允许单重态和三重态之间的有效跃迁。cds-ldhs/pva薄膜分别在355和450nm处显示强烈的荧光和磷光发射。结果表明,cds-ldhs/pva膜具有优异的双重发射(荧光,磷光)性能。cds-ldhs/pva薄膜在外部压力下的测试实验中显示,随着压力的增加,薄膜的磷光强度降低,但薄膜的荧光强度有规律地增强。压力和磷光、荧光强度都存在良好的线性相关性,r
2
分别为0.92和0.96。表明了cds-ldhs/pva薄膜的压制变色发光传感性能。可逆性实验表明,在12mpa的压力和加热3分钟的交替处理,cds-ldh/pva薄膜的磷光强度几乎可以恢复到原始的87%,说明了薄膜的良好的可重复性。(cds-ldhs/pva)薄膜在uv光下照射1h的荧光、磷光强度衰减图显示,照射1h后,薄膜的荧光强度和磷光强度分别降低到其原始值的77%和83%,说明了薄膜的良好的光(荧光,磷光)稳定性。
[0026]
实施例2
[0027]
1)镁铝硝酸根水滑石利用水热法制备:称取7.68g mg(no
3
)
2
·
6h
2
o和5.63g al(no
3
)
3
·
9h
2
o(摩尔比为2:1)溶解在100ml水后倒入三口烧瓶中;向三口烧瓶中缓慢滴加浓
度为2m的naoh溶液,维持ph=8.3后结束滴定;将三口烧瓶中的溶液倒入高压反应釜中,温度110℃,时间16h;待反应釜冷却至室温后,将胶状物离心并将沉淀用水洗涤4次;将胶状物倒入表面皿中,置于60℃的真空干燥箱中,干燥成粉末后取出待用。
[0028]
2)插层水滑石的合成:称量样品(3-氨基苯磺酸0.018mol)溶于110ml水中,倒入三口烧瓶;称量1.2g镁铝硝酸根水滑石置于三口烧瓶内,75℃搅拌75h并始终通入氮气,将产物离心后得到的沉淀物用水洗涤5次,最终胶状物溶于水中备用。
[0029]
3)碳点/水滑石复合物(cds-ldhs)的合成:插层水滑石的分散液倒入高压反应釜中,温度设置为200℃,时间为12h,待反应釜冷却至室温后,将产物离心后得到的沉淀物用水洗涤5次,一部分的胶状物倒入表面皿中,并放入60℃的真空干燥箱中,干燥成粉末后待用;另一部分胶状物溶于水中备用。
[0030]
4)碳点/水滑石@聚乙烯醇(cds-ldhs/pva)薄膜的制备:将pva加入水中,95℃下水浴搅拌溶解;取步骤3)制备的cd-ldhs溶液与25ml的聚乙烯醇溶液(5wt%),65℃下水浴搅拌3.5h,并超声40min;将cd-ldhs溶液和pva溶液混合均匀后倒入表面皿中并置于鼓风干燥箱中,60℃下干燥成薄膜。成膜后,将薄膜从表面皿上撕下,备用。
[0031]
实施例3
[0032]
1)锌铝硝酸根水滑石利用水热法制备:称取13.40g zn(no
3
)
2
·
6h
2
o和5.63g al(no
3
)
3
·
9h
2
o(摩尔比为3:1)溶解在150ml水后倒入三口烧瓶中。向三口烧瓶中缓慢滴加浓度为2m的naoh溶液,维持ph=6.5后结束滴定,将三口烧瓶中的溶液倒入高压反应釜中,温度110℃,时间20h。待反应釜冷却至室温后,将胶状物离心并将沉淀用水洗涤6次。将胶状物倒入表面皿中,置于70℃的真空干燥箱中,干燥成粉末后取出待用。
[0033]
2)插层水滑石的合成:称量样品(3-氨基苯磺酸0.020mol)溶于130ml水中,倒入三口烧瓶。称量1.5g锌铝硝酸根水滑石置于三口烧瓶内,75℃搅拌75h并始终通入氮气,将产物离心后得到的沉淀物用水洗涤6次,最终胶状物溶于水中备用。
[0034]
3)碳点/水滑石复合物(cds-ldhs)的合成:插层水滑石的分散液倒入高压反应釜中,温度设置为210℃,时间为11h,待反应釜冷却至室温后,将产物离心后得到的沉淀物用水洗涤6次,一部分的胶状物倒入表面皿中,并放入70℃的真空干燥箱中,干燥成粉末后待用。另一部分胶状物溶于水中备用。
[0035]
4)碳点/水滑石@聚乙烯醇(cds-ldhs/pva)薄膜的制备:将pva加入水中,90℃下水浴搅拌溶解。取步骤3)制备的cd-ldhs溶液与23ml的聚乙烯醇溶液(5wt%),58℃下水浴搅拌3.5h,并超声35min。将cd-ldhs溶液和pva溶液混合均匀后倒入表面皿中并置于鼓风干燥箱中,55℃下干燥成薄膜。成膜后,将薄膜从表面皿上撕下,备用。

起点商标作为专业知识产权交易平台,可以帮助大家解决很多问题,如果大家想要了解更多知产交易信息请点击 【在线咨询】或添加微信 【19522093243】与客服一对一沟通,为大家解决相关问题。

此文章来源于网络,如有侵权,请联系删除

tips