HI,欢迎来到起点商标网!
24小时服务QQ:2880605093

环戊二烯型化合物及其制备方法

2021-02-02 12:02:24|335|起点商标网
专利名称:环戊二烯型化合物及其制备方法
技术领域:
本发明涉及环戊二烯型化合物。本发明的另一个方面涉及环戊二烯型化合物的制备方法。
这里所用的“环戊二烯”一词是指具有以下通式的化合物
这里所用的“环戊二烯型化合物”一词是指在其结构中含有环戊二烯结构的化合物。具体例子包括未取代的环戊二烯,未取代的茚,未取代的芴,以及这类化合物的取代形式。也包括四氢化茚。
环戊二烯化合物过去已有许多用途。已发现某些这类化合物特别适用于制备金属茂化合物。最近有一些出版物指出,范围很大的烷基桥联的双-环戊二烯化合物适用作制备金属茂的配位体,这类金属茂可以用作烯烃类聚合的催化剂。含有这方面的广泛的公开内容的专利实例包括美国专利第4,808,561,4,794,096,4,892,851,4,769,510和4,933,403号,它们的公开内容在此并入本文作为本申请公开内容的一部分。
虽然以上专利中包含概括的一般性的有关一大类化合物的效用的陈述,但是仔细回顾以往的有关技术就会发现,这类陈述只是以上述专利的广泛的公开内容所包含的化合物中的少数几种所得的结果为基础的。此外,这些专利中并没有关于如何制备在广泛的一般性公开内容中列举的所有化合物的说明。在这些专利的广泛内容中所涉及的化合物,至少有若干种的制备路线对于本领域中具有通常技能的人来说远不是显而易见的,当人们希望寻求一种经济的方法以得到较纯的化合物时尤其是这样。例如,在有关含芴基的桥联环戊二烯型化合物的专利文献中,仅有的例子看来是(环戊二烯基)(芴基)-二甲基甲烷,它在美国专利第4,892,851号中被称作异丙基(环戊二烯基)芴基。该专利看来并未披露如何制备包含环戊二烯基与芴基桥联的化合物,其桥联基团不是上述的二甲基甲烷。
美国专利第3,426,069号介绍了一种被称作双(9-芴基)直链烯烃(含有至少是2个碳原子的直链桥)的制备方法,该方法是使芴与二醇在碱金属氢氧化物存在下反应。这一方法需要苛刻的反应条件,而按已反应的芴的摩尔数计算的产率仍只有20%左右。
本发明的目的之一是提供制备某些环戊二烯型化合物的新方法。
另一个目的是提供提高所需的环戊二烯型化合物的产率的方法。
又一个目的是提供较易得到基本上纯净的环戊二烯型化合物的制备方法。
还有一个目的是提供一些新的环戊二烯型化合物。
包含在实施方案中的本发明的其它方面、其它目的和优点,对那些本领域中技术熟练人员来说从以下的公开内容中将是显而易见的。
本发明提供制备通式为Z-R-Z的化合物的方法,其中R为两个Z之间的结构桥,每个Z可从环戊二烯型基团中选择,如取代或未取代的环戊二烯基、茚基、芴基、或四氢化茚基等;也可以一个Z是这种环戊二烯型基团,另一个Z为卤素或其类似基团(即假卤素、-CN、叠氮基)。按照一种实施方案,这类化合物(其中的Z基团是相同的,都是有机的)是用特定的Z前体与适当的R前体反应而制备的。按照另一种实施方案,这类化合物(其中一个Z基团是有机的另一个是卤素或类似基团)是用选定的Z前体与二卤代前体化合物在适宜条件下反应而制备的。按照本发明的又一种实施方案,提供了制备通式为Z-CH2-Z1的化合物的方法,其中Z和Z1是不同的有机基团,Z为未取代的芴基或取代的芴基,Z1为未取代的环戊二烯基、取代的环戊二烯基、未取代的茚基、取代的茚基、四氢化茚基、未取代的芴基、或取代的芴基。按照又一种实施方案,提供了一种方法,该法涉及使通式为Z-Me(烷基)3的化合物(其中Me为Si,Ge或Sn;Z为取代或未取代的芴基)与烷基碱金属反应以生成Z-Me(烷基)3的烷基碱金属盐,然后使所述的碱金属盐与二卤甲烷反应以生成9-甲基卤化物-9-三烷基-Me-Z,再让这种化合物与Z1的碱金属盐反应而得到Z-CH2-Z1。
按照本发明,还提供了许多新的环戊二烯基化合物,包括那些通式为Z-R-Z的化合物,其中至少一个Z为取代或取代的芴基,R为含有亚烷基,Sn、Si、Ge、B、Al、N、P或O的桥。
按照本发明的一个方面,通式为Z-R-Z的化合物(其中至少一个Z选自带有环戊二烯基官能度的有机基团,另一个Z选自同样的有机基团或者是选自F,Cl、Br或I等卤素)可以如下制得使有机基团Z的前体与烷基碱金属在适宜的反应条件下反应以生成相应的Z阴离子。所得的Z阴离子再在适宜的反应条件下与适当的通式为X-R-X形式的化合物接触,其中的每个X分别选自F,Br,Cl或I,R为含1至20个碳原子的亚烷基,所述的亚烷基可以任意选择地在其亚烷基链中含有选自Ge、Si、B、N、Al、Sn P和O的元素。这里所用的“在亚烷基链中”这一短语是指主链,有别于链上的支链。此外,如果不是亚烷基链,R也可以是由下述化合物派生的任何合适的桥联单元这种化合物在本发明的方法中像二卤亚烷基化合物一样参加反应。这方面的例子有Ge,Si,B,Al P,Sn等的二卤化合物。
有机基团Z的前体可选自未取代的环戊二烯、取代的环戊二烯、未取代的茚、取代的茚、未取代的芴、取代的芴、四氢化茚和另含有稠合的饱和或不饱和环状系统的环戊二烯基化合物,在此环状系统中带有或不带有N、P、Si、O和Sn一类的杂原子)。目前较好的Z是一种烃基有机化合物。
这里所用的“芴”一词是指用以下结构式表示的三环化合物
在本文所用的化学名称中,芴上的取代基位置是参照环上碳原子的连接点在式中所示的编号体系表示的。若非另外指出,这里所用的“芴基”一词是指9-芴基基团。
有机基团Z上或有机基团Z的前体上的取代基可在很大范围内变化,基本上只要是与本发明的方法不相抵触的任何取代基都可以。目前较好的实施方案中采用有机基团Z为烃基的前体。取代的烃基Z基团上常见的取代基有含1至20个碳原子的烷基取代基。若干取代基的例子包括甲基、乙基、丙基、丁基、叔丁基、苯基、苄基、环己基等。一个很好的实施方案采用含1至4个烷基取代基的Z,每个取代基有1至5个碳原子。以下情况也在本发明的范围之内Z或Z1成分中都带有取代基,而这些取代基连在一起形成另一个环(尤其是C4至C6环)。
有机基团Z的前体与二卤亚烷基化合物之间的反应可根据所需要的结果在很宽范围的条件下进行。通常是让有机基团Z的前体与烷基碱金属在有适当的液体溶剂存在下反应,所得的Z阴离子再与二卤亚烷基化合物在有适当的液体溶剂存在下反应。
所用的烷基碱金属可包括能形成适合的Z阴离子的任何烷基碱金属。一般来说,所述的碱金属选自钠、钾和锂,而烷基则含有1至8个碳原子(1至4个碳原子更好)。通常生成该阴离子的方法为将Z的化合物溶于适当的液体稀释剂中,然后加入烷基碱金属。生成这种阴离子的方法在本领域中是已知的。以往这种方法一般是用极性溶剂作为液体稀释剂,例如四氢呋喃。本专利申请人发现非极性溶剂(如烷烃、环烷烃、芳烃和醚等)也可以采用。若干具体例子为甲苯、己烷和二乙醚。
得到取代或未取代的Z离子后,使其与二卤亚烷基化合物反应。所得产物可用氯化铵饱和水溶液洗涤,用水洗涤,然后回收有机相。产物用合适的液体洗涤,将产物溶解,使产物重结晶而加以纯化。
所用的液体溶剂可以是任何适合的液体。适合的液体的例子包括二乙醚、四氢呋喃、烃类(如戊烷、己烷、甲苯)以及它们的混合物。当本发明的方法用于制备Z-R-Z形式的化合物(其中一个Z为卤化物)时,曾发现Z阴离子与二卤代亚烷基之间的反应最好是用非极性液体溶剂。Z阴离子宜逐渐加至搅拌下的二卤代烷的溶液中。产物可按上述的同样方法回收及纯化。
这里披露的方法中所用的反应压力和温度并非特别关键,可根据所要求的结果而在很大范围内变化。尽管所用压力可高一些或低一些但目前较好的是采用常压。通常的反应温度在大约-100℃至大约100℃范围内。一般来说反应在室温下进行较为方便。
Z阴离子与二卤亚烷基或与之相当的化合物之间的摩尔比可按所需要的结果在很大范围内变化。如果要制备每个Z是具有同样的环戊二烯基官能度的有机基团的化合物,则一般宜使Z阴离子与二卤亚烷基化合物的摩尔比至少约为2/1。在形成Z-R-X形式的化合物的方法中(其中的X为氟、氯、溴或碘等),一般宜使有机Z阴离子与二卤亚烷基化合物的摩尔比不大于约1/1。
以下情况也在本发明范围之内在极性液体溶剂(如四氢呋喃)中制备Z阴离子,然后基本上使所有的四氢呋喃与碳金属Z盐分离,再将此固体碱金属Z盐加至二卤亚烷基化合物在非极性液体中的混合物中。
在本文披露的反应中,在有下列化合物存在之下实现Z阴离子的形成和反应可能效果较好,这些化合物如六甲基磷酰三胺,碳酸丙烯或同类物。如果使用这些化合物,则其用量一般应足以改善反应产率或速度。碳酸丙烯特别适合于与环戊二烯基钠一起使用。六甲基磷酰三胺特别适合于与环戊二烯基锂合用。
制备非对称的Z-R-Z1化合物根据本发明的这一部分,制备Z-R-Z1形式的化合物,其中的Z和Z1不同,它们均选自环戊二烯基型化合物。若干较好的例子包括取代的芴基、未取代的芴基、环戊二烯基、取代的环戊二烯基、茚基、取代的茚基和四氢化茚基。
制备非对称的Z-R-Z1化合物的方法之一涉及使Z-R-X形式的Z的烷基卤化物与所选Z1化合物的碱金属盐反应。使Z的烷基卤化物与Z1阴离子在溶液中结合可生成Z-R-Z1化合物。构成这种溶液所用的液体稀释剂可以是任何适合的液体,其例子中包括前面提到的适用于生成对称化合物Z-R-Z的那些液体,可以有或者没有极性添加剂(如碳酸丙烯,六甲基磷酰三胺等)。所得产物可用前面就对称化合物提到过的方法进行回收和纯化。
已经注意到,当Z为取代和未取代的芴基,R为亚甲基,Z1为未取代的环戊二烯基时,有一种较好制备这种芴-(CH2)-环戊二烯化合物的方法。具体地说,这种化合物的制法为,使一种烷基碱金属与所选的取代或未取代的芴化合物反应以得到所选定的芴基阴离子溶液。该阴离子的溶液与卤代-三(烷基或芳基)Me结合(其中的Me为Si,Ge或Sn)以生成相应的(9-三(烷基或芳基)Me)芴化合物。该化合物可以再溶于适当的液体中并与烷基碱金属反应。所得的盐再以固体或溶液形式逐渐加至二卤甲烷的溶液中。二卤甲烷与甲硅烷基-芴基阴离子的摩尔比一般以至少约1/1较好,大于2/1更好。所得到的(9-三(烷基或芳基)Me)(9-氯代甲烷)芴化合物可以随后回收并与所选的Z1化合物的碱金属阴离子溶液反应。Z1阴离子与芴化合物的比例可在很大范围内变化。目前较好的比例为至少约1/1,2/1更好。所得产物可按前面所述的方法回收和纯化。当Z1为另一个环戊二烯基型化合物(如取代的环戊二烯基、未取代的茚基、取代的茚基、四氢化茚基、取代的芴基、或未取代的芴基等)时,Z为或取代或未取代的芴基,Z和Z1不相同时,这一方法也是可用的。
下面的实施例提供了特定取代的芴基化合物的具体制备方法的说明性例子。
通过下面有关本发明若干具体实施方案的例子将增进对本发明的进一步了解。
实施例1 制备1-甲基芴已用两种不同的反应方案从荧蒽制备1-甲基芴。反应路线可用下面的流程图说明。两种路线均用1-羧酸芴酮作起始物料。
为制备1-羧酸芴酮(即图中式1),将20.2克(0.1摩尔)的荧蒽在90℃下溶于150毫升乙酸中。在该温度下逐步加入200毫升的30%的H2O2水溶液。随后将反应混合物在该温度下再搅拌3小时。反应开始时生成浅黄色沉淀,过一段时间会消失。将反应混合物放在冰浴中冷却至0℃。生成橙色沉淀,过滤之。滤液倒入冷的稀盐酸水溶液中。生成橙黄色沉淀,用水洗两次后溶于氨水以去除未反应的荧蒽。混合物进行过滤。滤液用盐酸中和时生成橙色沉淀。这种沉淀即为1-羧酸芴酮,滤出干燥之。产量为13.4克。
路线Ⅰ将约0.76克(0.02毫摩尔)的LiAlH4悬浮于75毫升二乙醚与25毫升四氢呋喃(经LiAlH4干燥)的混合物中。该混合物在冰浴中冷却至0℃。然后分小批量加入1.35克(0.01毫摩尔)AlCl3,混合物在室温下搅拌15分钟。再在反应混合物加热回流的条件下经滴液漏斗加入4.2克(0.02毫摩尔)羧酸芴酮溶于400毫升四氢呋喃中的溶液。再保持搅拌30分钟。随后反应混合物冷却至室温,用盐酸溶液破坏未反应的LiAlH4。在真空中去除有机相。固体,亦即1-羟甲基芴酮(式2),回收到的量为3.2克。粗制的1-羟甲基芴酮不必进一步纯化即可使用。称出2克载在碳上的钯催化剂(含大约10%重量的Pd)放在烧瓶中,将4.2克(0.02毫摩尔)回收所得的1-甲醇芴酮溶于250毫升四氢呋喃并加至烧瓶中。以稍微过压的氢在室温下进行加氢反应,至氢气耗量为1350毫升为止。过滤反应混合物,滤液中的溶剂在真空中去除。奶油色的残渣用戊烷提取,溶液用二氧化硅过滤,在真空中除去溶剂。所得产物(1-甲基芴)为无色固体,以产量产率生成。
路线Ⅱ在第二种方式中1-羧酸芴酮用钯-碳催化剂还原,其方式与将1-羟甲基芴酮转化为1-甲基芴中所述的相同。得到定量产率的1-羧酸芴(即式3)。耗氢量为960毫升。这一产物再用LiAlH4和AlCl3还原为1-羟甲基芴(即式4),如生成1-羟甲基芴酮所述。1-羟甲基芴再用钯-碳催化剂和氢还原以产生1-甲基芴。
实施例2 制备1-叔丁基芴
约2克(0.01毫摩尔)1-羧酸芴悬浮在50毫升甲苯中。然后向溶液中加入4.6毫升AlMe3,反应混合物回流10小时。加热后反应混合物形成均匀溶液。该反应混合物冷却至室温,再倒入用冰冷却的稀盐酸水溶液中。分出有机层,用水洗涤,用Na2SO4干燥。然后在真空中除去溶剂。无色残渣用戊烷提取,溶液经二氧化硅过滤,真空去除溶剂。1-叔丁基芴(式6)的产率是定量的。
实施例3 制备2-乙基芴
在这一反应中,2-乙酰芴(即式7)经加氢转化为2-乙基芴。加氢反应类似于将式6化合物转化为式5化合物所用的反应。用氢量为970毫升。真空中除去溶剂后得到奶油色固体。将其溶于戊烷,溶液经二氧化硅过滤。真空中去除戊烷,2-乙基芴的产率是定量的。
实施例4 制备2-叔丁基芴
在这一反应中,2-乙酰芴与三甲基铝反应。这一甲基化反应类似于实施例2中介绍的将化合物3转化为化合物6的反应。但在这里只需要两倍过量的AlMe3。生成的2-叔丁基芴为白色固体,定量产率。
实施例5 制备4-甲基芴已经用两种不同的反应方式来制备4-甲基芴(即式15)。反应方式可概括如下。
两种反应方式都用4-羧酸芴酮(式11)作起始物料。化合物4-羧酸芴酮由菲制得,所用的方法类似于J.Org.Chem.21,243(1956)一文中所报导的方法,只是不用乙酐。代替乙酐的是用过氧化氢和乙酸以得到产率为67%的2,21-二羧酸二苯基(即式10)。
式10所示的二苯基产物再用硫酸氧化,其方法如J.Am.Chem.Soc.64,2845(1942)一文所述,所得到的是82%产率的4-羧酸芴酮(即式11)。
方式1式11所示的化合物以相同于实施例1中的方法用LiAlH4和AlCl3还原。反应得到80%产率的4-羟甲基芴酮(即式14),后者再如前面所述用氢和钯-碳催化剂还原。可得定量产率的4-甲基芴。
方式2式11所示的化合物如前所述用氢和钯-碳催化剂还原。反应生成定量产率的4-羧酸芴(即式12)。用LiAlH4和AlCl3还原得到80%产率的4-羟甲基芴(即式13)。这一产物再用氢和钯-碳催化剂还原以产生定量产率的4-甲基芴。
实施例6 制备4-叔丁基4-羧酸芴与三甲基铝一般按实施例2中所述进行反应以生成产率为60%的4-叔丁基芴。
实施例7 制备2,7-二(叔丁基)-4-甲基芴
2,7-二(叔丁基)-4-亚甲基氯芴用氢和钯-碳催化剂还原以得到定量产率的2,7-二(叔丁基)-4-甲基芴。
实施例8 制备1,2-双(9-芴基)乙烷
约8.3克(0.05摩尔)芴溶于150毫升四氢呋喃中。然后往该溶液中滴加31.8毫升(0.05摩尔)丁基锂(1.6摩尔的己烷溶液)。1小时后加入2.3毫升(0.25摩尔)的二溴乙烷在25毫升四氢呋喃中的溶液。溶液搅拌3小时。黄色溶液用50毫升氯化铵水溶液(5克NH4Cl/50毫升水)洗涤,再用50毫升水洗,随后用Na2SO4干燥有机相。接着在真空中去除溶剂。浅黄色残渣用25毫升戊烷洗涤两次。所得产物为白色。产量为12.5克,即按已反应的芴的摩尔数计算,产率为约70%。产物经1H核磁共振、13C核磁共振、质谱和气相色谱分析鉴定。
实施例9 制备1-溴-2-(芴基)乙烷
在这一反应中,8.3克(0.05摩尔)芴溶于150毫升四氢呋喃中。向此溶液中滴加31.8毫升(0.05摩尔)丁基锂(1.6摩尔的己烷溶液)。一小时后将此溶液在2小时时间里逐渐加至搅拌下的9毫升(0.1摩尔)二溴乙烷在300毫升戊烷中的溶液。然后将反应混合物用50毫升的氯化铵水溶液处理,再用50毫升水洗涤。有机相用Na2SO4干燥。接着在真空中除去溶剂。黄色残渣溶于戊烷。该戊烷溶液经二氧化硅过滤。溶液浓缩至起始体积的20%左右,然后在-30℃下结晶析出产物。得到数量为10.88克的1-溴-2-(芴基)乙烷。产物经1H核磁共振、13C核磁共振和质谱鉴定。
实施例10 其他溴代,芴基烷基化合物用其它二卤代烷基类代替1,2-二溴乙烷进行了类似于实施例9所述的反应。这种“其它二卤化合物”的例子有1,3-二溴丙烷、1,2-二溴-2-甲基乙烷和二氯甲烷。得到相应的芴基烷基卤化物。
实施例11 其它双芴基化合物用其它X-R-X化合物代替二溴乙烷进行了类似于实施例8所述的反应。这种“其它二溴化合物”的例子有1,3-二溴丙烷、二溴甲烷、1,2-二溴-2-甲基乙烷和二甲基二溴硅烷(即BrSi(CH3)2Br)。在以上每种情况下得到双芴基化合物,其中的芴基由二卤化合物的剩余桥连结。
实施例12用烷基取代的芴化合物代替未取代的芴进行了类似于实施例8中所述的反应。所用的该种取代芴的例子有1-叔丁基芴、1-甲基芴2-乙基芴、2-叔丁基芴、4-甲基芴、1-甲基-4-甲基芴1-叔丁基-4-叔丁基芴、2-叔丁基-7-叔丁基芴、2,7-二叔丁基-4-甲基芴,和4-叔丁基芴。在每一种场合下,得到的都是双(取代芴基)烷烃,其中的芴基分别对应于所用的取代的芴化合物。
实施例13 制备芴-(CH2)2-环戊二烯环戊二烯与丁基锂在四氢呋喃中反应生成环戊二烯基锂。在-40℃下溶于150毫升四氢呋喃中的0.02摩尔的环戊二烯基锂溶液与50毫升四氢呋喃中的芴基-(CH2)2-Br溶液在室温下混合。加入10毫升六甲基膦三酰胺(HMPT)。室温下搅拌3小时后,此溶液用50毫升氯化铵水溶液洗涤,再用50毫升水洗,然后用Na2SO4干燥有机相。真空下去除溶剂。所得的(芴基)乙烷(环戊二烯基)可以通过溶于戊烷,再结晶的办法加以纯化。产物用质谱和气相色谱鉴定。
实施例14用其它芴基溴代烷烃代替芴基溴代乙烷进行了类似于实施例13所述的反应。其它溴代烷烃的例子包括1-芴基-3-溴代丙烷、2,7-二叔丁基芴基,和1-甲基-2-芴基-1-溴代乙烷。得到的是相应的烷基桥联的芴基-环戊二烯基化合物。
实施例15
或用甲基环戊二烯、取代的芴或茚代替环戊二烯(且不加HMPT)进行了类似于实施例13和14的反应。这种反应生成了下列化合物1-(芴基)-2-(茚基)乙烷、1-(芴基)-2-(甲基环戊二烯基)乙烷、1-(芴基)-3-(茚基)丙烷、1-(芴基)-3-(甲基环戊二烯基)丙烷、1-(芴基)-2-(甲基)-2-(茚基)乙烷以及1-(芴基)-2-(甲基)-2-(甲基环戊二烯基)乙烷,1-(1-甲基芴基)-2-(4-甲基芴基)乙烷,1-(1-叔丁基芴基)-2-(4-叔丁基芴基)乙烷和1-(2,7-二叔丁基芴基)-2-芴基乙烷。
实施例16 制备9-(三甲基甲硅烷基)芴先将8.3克(0.05摩尔)芴溶于150毫升四氢呋喃中。再向此溶液中滴加31.8毫升(0.05摩尔)的丁基锂(1.6摩尔的己烷溶液)。搅拌1小时后,用3个小时的时间逐渐向此溶液中加入6.3毫升(0.05摩尔)氯代三甲基硅烷(溶于25毫升四氢呋喃中)。反应混合物再搅拌3小时。随后向暗黄色溶液中加入50毫升的氯化铵水溶液。溶液再用50毫升水处理。有机相用Na2SO4干燥。然后在真空中去除溶剂。黄色残渣溶于戊烷中。产物9-(三甲基甲硅烷基)芴在4℃结晶。得到的产量为8.33克。
实施例17 制备(环戊二烯基)(芴基)甲烷
B-环戊二烯基在此反应中,将按实施例16所述反应得到的4.76克(0.02摩尔)的9-(三甲基甲硅烷基)芴溶于150毫升四氢呋喃中。接着向该溶液中滴加12.5毫升(0.02摩尔)丁基锂(1.6摩尔的己烷溶液)。室温下搅拌1小时后,除去溶剂,将残渣逐渐加至5毫升二氯甲烷(0.08摩尔)在300毫升戊烷中的溶液中。反应混合物再搅拌1小时。黄色溶液过滤,溶剂在真空中去除,得到9-(氯甲基)-9-(三甲基甲硅烷基)芴。
将9-(氯甲基)-9-(三甲基甲硅烷基)芴溶于200毫升四氢呋喃中并滴加至环戊二烯基锂(0.04摩尔)在200毫升四氢呋喃中的溶液中。反应混合物再搅拌2小时。黄色溶液用50毫升的氯化铵水溶液洗涤,再用50毫升水洗,然后用Na2SO4干燥有机相。接着在真空中除去溶剂。粗产品溶于戊烷,在-30℃结晶。回收的产物为1-芴基-1-环戊二烯基甲烷。
实施例18 制备(环戊二烯基)(芴基)甲烷在此反应中,4.76克(0.02摩尔)的9-(三甲基甲硅烷基)芴(熔点为98℃)溶于150毫升四氢呋喃中,冷却到-40℃。然后向此溶液中滴加12.5毫升(0.02摩尔)丁基锂(1.6摩尔的己烷溶液)。室温下搅拌1小时后,在真空中除去溶剂,将黄色残渣在30分钟内逐渐加至5毫升二氯甲烷(0.08摩尔)在500毫升戊烷中的溶液中。反应混合物再搅拌45分钟,黄色溶液进行过滤(去除LiCl),经过浓缩和冷却,结晶得到产物9-(三甲基甲硅烷基)-9-(氯甲基)芴。
粗产品呈黄色(气相色谱分析的含量为90%)。结晶后产物呈浅黄色,产率75%至80%。熔点为105℃至106℃。
然后将4.3克(0.015摩尔)的浅黄色晶体分小批加至环戊二烯基锂(0.03摩尔)(溶于含有3毫升六甲基亚磷三酰胺的200毫升四氢呋喃中)的溶液。反应混合物再搅拌30分钟。深色溶液用50毫升氯化铵水溶液洗涤,再用50毫升水洗,然后用Na2SO4干燥有机相。接着在真空中去除溶剂。稠油状粗产品溶于戊烷,在-30℃结晶。发现的唯一副产物是芴,它可以回收再用。(环戊二烯基)(芴基)甲烷的产率为60%。再结晶产物的熔点为85℃至86℃。
实施例19 制备(环戊二烯基)(芴基)甲烷在此反应中将2.9克(0.01摩尔)的(9-氯甲基)(9-三甲基甲硅烷基)芴(来自实施例17的原料)溶于50毫升四氢呋喃中。加50毫升碳酸丙烯。再加2.64克(0.03摩尔)环戊二烯基钠。反应混合物搅拌过夜。再加100毫升己烷,反应混合物每次用100毫升水洗3次。分离出的有机相用Na2SO4干燥。真空蒸发除去溶剂。残渣溶于甲苯,溶液经二氧化硅过滤。真空中去除溶剂,残渣在10-3巴下干燥过夜。将残渣溶于二乙醚,0℃下真空中去除溶剂。(环戊二烯基)(芴基)甲烷的产率为90%。
权利要求
1.制备通式为Z-R-Z的化合物的方法,其中至少一个Z选自带有环戊二烯基官能度的有机基团,另一个Z选自同样的有机基团或者是选自氯、溴或碘的卤素,该方法包括使有机基团Z的前体与烷基碱金属在适宜条件下反应以生成相应的Z阴离子,并使所述的Z阴离子在适宜的反应条件下与通式为X-R-X的二卤代亚烷基化合物接触,其中每个X分别选自Br、Cl或I,R为含1至20个碳原子的亚烷基,所述的亚烷基可以任意选择地在其亚烷基链中含有选自Ge,B、Si、P、N,Al和O的元素。
2.根据权利要求1所述的方法,其中每个Z是相同的有机基团。
3.根据权利要求2所述的方法,其中有机基团Z的前体选自未取代的环戊二烯、取代的环戊二烯、未取代的茚、取代的茚、未取代的芴、取代的芴和四氢化茚。
4.根据权利要求3所述的方法,其中的有机基团Z的前体为烃基。
5.根据权利要求3所述的方法,其中的Z含有1至4个烷基取代基,各含有1至4个碳原子。
6.根据权利要求3所述的方法,其中的Z为未取代的环戊二烯基或取代的环戊二烯基。
7.根据权利要求3所述的方法,其中的Z为未取代的或取代的茚基。
8.根据权利要求3所述的方法,其中的Z为未取代的或取代的芴基。
9.根据权利要求8所述的方法,其中取代的或未取代的芴与所述的烷基碱金属反应生成相应的芴基阴离子,后者与X-R-X反应。
10.根据权利要求9所述的方法,其中芴基阴离子与X-R-X的摩尔比至少为约2/1。
11.根据权利要求10所述的方法,其中的Z为未取代的芴基。
12.根据权利要求11所述的方法,该方法生成1.2-双(9-芴基)乙烷。
13.根据权利要求11所述的方法,该方法生成双(9-芴基)甲烷。
14.根据权利要求11所述的方法,该方法生成1.2-双(9-芴基)-2-甲基乙烷。
15.根据权利要求11所述的方法,该方法生成通式为Z-Si(CH3)2-Z的化合物,其中的Z为取代的9-芴基。
16.根据权利要求10所述的方法,其中的Z为取代的9-芴基。
17.根据权利要求16所述的方法,其中所述的取代的芴基选自1-叔丁基(9-芴基)、4-叔丁基(9-芴基)、1-甲基(9-芴基)、2-乙基(9-芴基)、2-叔丁基(9-芴基)和4-甲基(9-芴基)。
18.用权利要求16所述的方法生成的产物,其中的Z选自1-叔丁基(9-芴基)、2-叔丁基(9-芴基)和4-叔丁基(9-芴基)。
19.根据权利要求18所述的产物,其中的R为-CH2-CH2-。
20.用权利要求16所述的方法所生成的产物,其中的Z为2.7-二叔丁基(9-芴基)。
21.用权利要求20所述的产物,其中的R为-CH2-CH2-。
22.用权利要求10所述的方法所生成的产物,其中的R为-CH2-。
23.用权利要求10所述的方法所生成的产物,其中的R为带支链的亚烷基链基团。
24.根据权利要求23所述的产物,其中的R为2-甲基亚乙基。
25.通式为Z-R-Z的产物,其中的每个Z是相同的,都是取代的或未取代的9-芴基,R为-CH2-。
26.根据权利要求25所述的产物,其中每个Z均匀为未取代的9-芴基。
27.符合通式Z-R-Z的产物,其中每一个Z是相同的,均选自叔丁基取代的9-芴基基团,R为含1至20个碳原子的亚烷基基团,所述的亚烷基基团也可以任意选择地在其亚烷基链上含有选自Sn、Ge、Si、B、P、N、Al和O的元素。
28.根据权利要求27所述的产物,该产物选自以下一组化合物1.2-二-1-叔丁基(9-芴基)乙烷、1,2-二-2-叔丁基(9-芴基)乙烷和1.2-二-4-叔丁基(9-芴基)乙烷。
29.通式为Z-R-Z的产物,其中每个Z是相同的,均为取代的或未取代的9-芴基,R为含3至20个碳原子的带支链的亚烷基链基团,这些碳原子中至少有2个在主链上。
30.根据权利要求1所述的方法,其中通式Z-R-Z中的一个Z是选自Cl,Br、I这一组中的卤素。
31.根据权利要求30所述的方法,其中有机基团Z的前体选自未取代的环戊二烯、取代的环戊二烯、未取代的茚、取代的茚、未取代的芴、取代的芴和四氢化茚。
32.根据权利要求31所述的方法,其中Z阴离子与X-R-X形式的化合物的摩尔比不大于约1/1,所述的Z阴离子与所述的X-R-X在有Z阴离子的非极性液体溶剂存在下接触。
33.根据权利要求32所述的方法,其中的有机基团Z为未取代的芴基。
34.根据权利要求33所述的方法,其中的R在主链中含2至4个碳原子。
35.根据权利要求32所述的方法,其中的有机基团Z为取代的芴基。
36.根据权利要求35所述的方法,其中的R在主链中含2至4个碳原子。
37.通式为Z-R-X的化合物,其中的Z为芴基或烷基取代的芴基(其中每一个烷基取代基含1至20个碳原子),X为选自Cl,Br,I的卤素,R为连接Z和X的二价基团,该二价基团选自含1至20个碳原子的二价烃类亚烷基,或者选自含2至20个碳原子且在亚烷基链中含Sn、Si、Ge、P或N的二价亚烷基。
38.根据权利要求37所述的化合物,其中的R含1至5个碳原子。
39.根据权利要求38所述的化合物,其中的R选自二价亚甲基、亚乙基、亚丙基和1-甲基亚乙基。
40.根据权利要求39所述的化合物,其中的X为Br。
41.根据权利要求40所述的化合物,其中的Z为未取代的9-芴基。
42.根据权利要求41所述的化合物,该化合物的通式相应于命名1-溴-1-甲基-2-(9-芴基)乙烷。
43.根据权利要求40所述的化合物,其中的Z为1-甲基(9-芴基)。
44.根据权利要求40所述的化合物,其中的R为二价亚乙基Z选自1-甲基-(9-芴基)、4-甲基-(9-芴基)、1-叔丁基-(9-芴基)、2.7-二叔丁基-(9-芴基)和4-叔丁基-(9-芴基)。
45.制备通式为Z-R-Z1的化合物的方法,其中的Z和Z1不同,分别选自以下一组基团未取代的芴基或取代的芴基、未取代的环戊二烯基、取代的环戊二烯基、未取代的茚基、取代的茚基和四氢化茚基;R为含1至20个碳原子的亚烷基,它可以任意选择地在其链中含有选自Sn、Ge、Si、B、N、P、Al和O的元素,该方法包括使通式为Z-R-X(其中X为Cl、Br或I)的化合物与Z1阴离子的碱金属盐在适宜的反应条件下反应。
46.根据权利要求45所述的方法,其中的Z为未取代的芴基。
47.根据权利要求46所述的方法,其中的R为-CH2-CH2-,-CH2-CH2-CH2-,或

48.根据权利要求47所述的方法,其中的Z1选自未取代的环戊二烯基、未取代的茚基和甲基环戊二烯基。
49.用权利要求48所述的方法制备的通式为Z-R-Z1的化合物。
50.根据权利要求45所述的方法,其中的Z为烷基取代的芴基。
51.根据权利要求50所述的方法,其中的R为-CH2-CH2-,-CH2-CH2-CH2-,或

52.用权利要求51所述的方法制备的通式为Z-R-Z1的化合物。
53.根据权利要求52所述的化合物,其中的R为-CH2-CH2-,Z为1-甲基芴基,Z1为4-甲基芴基。
54.根据权利要求52所述的化合物,其中的R为-CH2-CH2-,Z为1-叔丁基芴基,Z1为4-叔丁基芴基。
55.根据权利要求45所述的方法,其中的Z-R-X是由Z阴离子的碱金属盐与X-R-X形式的二卤化合物反应而生成的,该反应是在适宜的反应条件下将所述的Z阴离子盐逐渐加入到所述的二卤化合物中而实现的。
56.根据权利要求45所述的方法,其中的Z-R-X与Z1阴离子在Z1阴离子的非极性液体溶剂中反应。
57.制备通式为Z-CH2-Z1的化合物的方法,其中的Z与Z1不同,Z为未取代的芴基或取代的芴基,Z1为未取代的环戊二烯基、取代的环戊二烯基、未取代的茚基、取代的茚基、四氢化茚基、未取代的芴基或取代的芴基,该方法包括使Z-Si(CH3)3形式的化合物与碱金属反应以生成Z-Si(CH3)3的碱金属盐,再使所述的烷基碱金属盐与二卤甲烷反应以生成9-甲基卤化物-9-三甲基甲硅烷基Z,再使所述的9-甲基卤化物-9-三甲基甲硅烷基Z与Z1的碱金属盐反应以生成Z-CH2-Z1,其中二卤甲烷中的卤素分别选自Cl,Br和I。
58.根据权利要求57所述的方法,其中的Z为未取代的芴基Z1为未取代的环戊二烯基。
59.根据权利要求57所述的方法,其中的Z为未取代的芴基,Z1为未取代的茚基。
60.用权利要求57所述的方法所生成的Z-CH2-Z1形式的化合物。
61.化合物1-(9-芴基)-1-(环戊二烯基)甲烷。
62.化合物9-(三甲基甲硅烷基)-9-(氯甲基)芴。
63.根据权利要求30所述的方法,其中使9-(三甲基甲硅烷基)芴与烷基碱金属反应,所得的9-(三甲基甲硅烷基)芴盐再与二氯甲烷反应以生成9-(三甲基甲硅烷基)-9-(氯甲基)芴。
64.制备1-(环戊二烯基)-1-(芴基)甲烷的方法,该方法包括使由权利要求63所述的方法制备的9-(三甲基甲硅烷基-9-(氯甲基)芴与环戊二烯的碱金属盐反应。
65.根据权利要求64所述的方法,其中使所述的9-(三甲基甲硅烷基)-9-(氯甲基)芴与环戊二烯基钠在有碳酸丙烯存在下反应。
66.根据权利要求64所述的方法,其中使所述的9-(三甲基甲硅烷基)-9-(氯甲基)芴与环戊二烯基锂在有六甲基磷酰三胺存在下反应。
全文摘要
本发明涉及通式为Z—R—Z的化合物的制备方法,其中的每一个Z可选自环戊二烯基型的基团,如取代的或未取代的环戊二烯基、茚基、芴基或四氯化茚基;或者是其中的一个Z为氯,溴或碘。该方法包括使特定的Z的前体与二卤亚烷基化合物反应。本发明还公开了新型的环戊二烯基型化合物。
文档编号C07C51/373GK1066440SQ9210176
公开日1992年11月25日 申请日期1992年3月14日 优先权日1991年5月9日
发明者K·帕茨迪斯, S·J·帕拉卡尔, H·G·阿尔特 申请人:菲利浦石油公司

起点商标作为专业知识产权交易平台,可以帮助大家解决很多问题,如果大家想要了解更多知产交易信息请点击 【在线咨询】或添加微信 【19522093243】与客服一对一沟通,为大家解决相关问题。

此文章来源于网络,如有侵权,请联系删除

tips