HI,欢迎来到起点商标网!
24小时服务QQ:2880605093

陶瓷板材的制作方法

2021-01-31 02:01:06|379|起点商标网

本发明涉及一种包含炉渣以及石粉的陶瓷板材,尤其涉及一种包含两种以上的石粉以及废弃物炉渣且阻燃性能以及耐久性、氡气阻隔性优秀的无氡(radon-free)陶瓷板材。



背景技术:

石粉或废石的石粉是一种需要进行掩埋处理的废弃物,目前正在积极开发能够通过对其进行熔融而实现纤维化并将其作为建筑材料再利用的技术。在韩国注册专利公报第10-1748486号以及第10-1516981号等中公开了利用由包括二氧化硅的无机物材料构成的组合物制造矿物棉的方法,能够通过对由无机物材料构成的组合物进行熔融并借助于纺纱工程进行纤维化而制造出矿物棉。

石粉同样是由无机物材料构成,因此能够通过如上所述的纤维化工程获得被纤维化原材料,并进一步利用其制造出各种建筑用材料。

通常,作为用于进行纤维化的熔融炉,使用在上述先行文献中公开的化铁炉或电炉。化铁炉能够通过扩大生产规模而提升其生产性能,但是因为作为热源使用焦炭,因此会在熔融过程中排放如二氧化碳等温室气体并因此导致环境污染的问题,而且还具有难以控制炉内温度的问题。此外,虽然电炉的生产性能较低,但是能够大幅减少温室气体的排放,对炉内温度的控制简单,还能够形成1,700℃以上的高温条件,因此具有能够提升熔融物的均质度并使纤维品质稳定化的优点。

但是,在无机物材料的纤维化工程中所需要的1,700℃以上的高温会导致生产成本的增加并因此成为商品化的绊脚石。

作为在低温下进行纤维化的技术,在韩国注册专利公报第10-0208872号中,公开了一种通过对如玄武岩、花岗岩、粗粒玄武岩、白云石、石灰岩以及砂岩等能够从大自然低成本获取到的石粉和如钼渣或钢渣以及如炉灰等源于工业工程中的低价副产物进行混合而制造出组合物,然后在约1,2000℃下进行熔融并在内部离心分离纺纱机中进行纤维化的技术,但是因为在使用如上所述的原料时的成形性较低,因此具有难以制造出如板材等成形体的问题。

通常在利用石材制造建筑用板材时,采用如韩国注册专利公报第10-1566574号中公开的在利用高炉渣、石粉污泥、生石灰制造出糊料之后对其进行硬化而制造出成形体的方法,或者采用如在韩国公开专利公报第10-2004-0016323号中公开的在将石粉以及陶瓷材料在1,300~1,600℃下进行熔融之后对其进行成形而制造出成形体的方法,但是前者因为是在低温条件下进行硬化而难以呈现出阻燃性能,从而无法适用于阻燃产品,而后者虽然其熔融温度相对较低,但是因为不经过纤维化工程而造成产品的比重较高,从而在其用途方面比较受限。

因此,需要一种能够在降低熔融温度的同时进行纤维化,从而制造出高品质的陶瓷板材的技术。

现有技术文献

专利文献

韩国注册专利公报第10-1748486号

韩国注册专利公报第10-1516981号

韩国注册专利公报第10-0208872号

韩国注册专利公报第10-1566547号

韩国公开专利公报第10-2004-0016323号



技术实现要素:

本发明的目的在于解决如上所述的现有技术中存在的问题而提供一种利用包含炉渣以及石粉的原材料制造出的耐火性、隔热性、耐腐蚀性、耐水性、氡气阻隔性优秀的无氡陶瓷板材。

此外,本发明的目的在于提供一种通过将上述炉渣以及石粉的混合物在低温条件下进行纤维化而制造出的轻量化的陶瓷板材。

为了达成如上所述的目的,适用本发明的陶瓷板材,其特征在于:包括从花岗岩、玄武岩、石灰岩、白云石、麦饭石、乌石、长石以及砂岩中选择的两种以上的石粉与废弃物炉渣的混合物以及双酚类粘合剂。

此时,上述双酚类粘合剂是通过对聚氨酯丙烯酸酯树脂以及聚酰胺树脂进行混合而制造出的树脂珠,而上述聚氨酯丙烯酸酯树脂与上述聚酰胺树脂能够以1:1至1:5的重量比进行混合。

此外,上述炉渣以及石粉的混合物能够以3:7至5:5的重量比进行混合。

此外,上述炉渣以及石粉的混合物能够是密度为80㎏/m3至100㎏/m3的纤维化原材料。

此外,根据不同的用途,陶瓷板材的厚度能够是5㎜至30㎜,密度能够是600㎏/m3至1,500㎏/m3

适用本发明的陶瓷板材是利用包含炉渣以及石粉的原材料制造而成,能够呈现出耐火性、隔热性、耐腐蚀性、耐水性、氡气阻隔性优秀的性能。

此外,本发明能够提供一种通过将上述炉渣以及石粉的混合物在低温条件下进行纤维化而制造出的轻量化的陶瓷板材。

具体实施方式

接下来,将对本发明进行更为详细的说明。在本说明书以及权利要求书中所使用的术语或单次并不应限定于一般的或词典中的含义做出解释,应着眼于发明人能够为了以最佳的方法对自己的发明进行说明而适当地对术语的概念做出定义的原则,以符合本发明之技术思想的含义以及概念做出解释。

适用本发明的陶瓷板材,其特征在于:包括废弃物炉渣与从花岗岩、玄武岩、石灰岩、白云石、麦饭石、乌石、长石以及砂岩中选择的两种以上的石粉的混合物以及双酚类粘合剂。

如上所述的陶瓷板材,能够通过向在将炉渣与两种以上的石粉混合之后在800至1,400℃下执行预热、熔融的纤维化工程而制造出的纤维化原材料混合双酚类粘合剂并进行成形的方式制造。此外,能够通过在混合上述双酚类粘合剂的工程中追加混合如油、有色染料等而使得所制造出的陶瓷板材呈现出多种颜色或大理石形状。此外,能够通过利用点描喷射方式在所制造出的陶瓷板材的全部或部分表面涂覆漆树或抗菌涂料而制造出经过环保型抗菌处理或抗污染处理的陶瓷板材。此外,能够通过利用喷嘴印刷方式在所制造出的陶瓷板材的表面涂覆阻燃涂料而快速呈现出鲜明且多样化的设计(平面、浮雕),还能够通过执行高强度涂饰作业而制造出高光泽度板材。此外,能够通过利用热压接或粘接方式将三聚氰胺类的低压三聚氰胺(lpm)膜或高压三聚氰胺(hpm)膜粘贴到所制造出的陶瓷板材的表面而制造出阻燃板材。

此外,还能够通过安装到在建筑物的混凝土墙面上形成的氡气移动通道中而作为防止氡气泄漏的用途使用。

用于制造出如上所述的多种用途的产品的上述陶瓷板材能够作为建筑用以及室内用装饰材料或家具材料使用,当作为建筑用材料使用时需要厚度为5~10㎜、密度为1,000~1,500㎏/m3的物性,而作为室内用装饰材料或家具材料使用时需要厚度为10~30㎜、密度为600~1,000㎏/m3的物性,因此在包含石粉的板材自身的特性上很难充分满足上述所需要的物性。

为此,能够采用减少石粉的含量并增加废弃物炉渣的含量或大量混合如粉煤灰等低密度原材料的方法,但是在采用如上所述的方法时又会导致板材的耐久性、加工性不充分的问题,因此在本发明中通过执行将对上述石粉与废弃物炉渣进行混合的混合物在800至1,400℃的温度下预热、熔融的纤维化工程而实现材料的低密度化。

作为上述石粉,使用从花岗岩、玄武岩、石灰岩、白云石、麦饭石、乌石、长石以及砂岩中选择的两种以上的石粉的混合物,此时能够通过石粉的类型以及适当的比例对包含于陶瓷板材中的陶瓷组成进行调节,并借此达成所需要的物性。较佳地,能够对花岗岩与白云石进行混合,通过对如上所述的石粉进行混合,能够将熔点相对较低的氧化钙、氧化镁的含量维持在适当的水准,从而在相对较低的温度状态下实现纤维化。也能够利用一种石粉制造出纤维化原材料,很难获得适合于降低熔点的组成,所以对两种以上的石粉进行混合使用。

此外,作为上述炉渣能够使用在各种工程中产生的副产物,而作为上述炉渣的实例,包括制铁炉渣以及高炉炉渣等。在对上述废弃物炉渣与石粉混合物进行混合的整体混合物中,当上述氧化钙以及氧化镁在整个石粉中的含量分别为20至30重量%、5至10重量%时,在1,400℃以下也能够充分实现纤维化。有关于此,如现有技术即韩国注册专利第10-0208872号中的记载,当包含石粉的组合物中的氧化钙的含量为8至20重量%、氧化镁的含量为1至9重量%时,能够在1,225℃以下实现液化。尤其是,当氧化镁的含量增加时能够在熔融工程中将温度降低至1,350℃以下,而通过如上所述的熔融温度的下降,能够有效地进行纤维化。

此外,上述炉渣以及石粉以3:7至5:5的重量比进行混合为宜,在上述组合量下能够提升隔热性能以及耐热性能。此外,在对上述炉渣以及石粉进行纤维化之前能够将其固态化成球体形态,在这种情况下考虑到固态化工程以及投入工程的效率而将其制造成20至30㎜的大小为宜。

在通过对上述石粉以及废弃物炉渣的混合物进行熔融而制造出熔融物之后,能够通过对其进行纤维化而获得低密度的材料。上述纤维化工程能够利用高速涡轮机执行,通过利用高速涡轮机使上述混合物飞散,能够制造成粗细为3至7μm、长度为300㎜以下的纤维形态。如上所述的纤维化原材料的密度为80至100㎏/m3,与原材料相比能够实现低密度化。此外,上述高速涡轮机能够使用一般的高速涡轮机,并不受到特殊的限定。

此外,通常为了对上述纤维化材料进行收集而使用以之字形层叠原料的钟摆系统,但是在本发明中即使是不适用如上所述的钟摆系统也能够轻易地对纤维化材料进行收集。

为了对完成上述纤维化工程的混合物进行成形而混合如粘合剂等添加剂,而作为上述粘合剂使用双酚类粘合剂。借此,能够实现环保型的制造工程,在对上述纤维化材料进行混合之后,能够通过加压以及加热执行分散以及成形工程。此外,在上述成形工程中,能够在利用加热的辊轧机进行1次低压成形之后再进行2次高压成形,从而提升所制造出的陶瓷板材的物性。

此外,能够根据所需要的规格对所制造出的陶瓷板材进行切割加工,而所制造出的板材能够通过在常温下自然干燥之后对其进行包装而实现商品化。

作为适合于上述成形工程的双酚类粘合剂,使用通过对聚氨酯丙烯酸酯树脂以及聚酰胺树脂进行混合而制造出的树脂珠,在以固态与上述纤维化材料进行混合之后利用加压机将陶瓷板材加压以及加热至所需要的厚度时,上述树脂珠将发生熔融并与上述纤维化材料混合,从而形成陶瓷板材成形体。

构成上述树脂珠的聚氨酯丙烯酸酯树脂,能够通过向从聚酯多元醇和聚醚多元醇中选择的多元醇以及从甲苯二异氰酸酯(tdi)、二苯基甲烷二异氰酸酯(mdi)、四甲基间苯二亚甲基二异氰酸酯(txmdi)、异氟尔酮二异氰酸酯(ipdi)、萘1,5-二异氰酸酯(ndi)、六亚甲基二异氰酸酯(hdi)中选择的异氰酸酯附加如扩链剂、丙烯酸酯等进行聚合反应的方式制造。因为通过如上所述的方式制造出的聚氨酯丙烯酸酯树脂不包含如苯酚等有害成分,因此能够借此执行环保型工程。

除了上述聚氨酯丙烯酸酯树脂之外,还将混合聚酰胺树脂并通过对其进行干燥而制造出树脂珠,而通过混合上述聚酰胺树脂,能够提升粘合剂的耐热性能,因此能够在高温、高压状态下进行成形时防止其分散性以及物性的下降。此外,在上述制造树脂珠的工程中,能够适用一般的制造树脂珠的工程,能够根据需要向树脂的混合物混合适量的有机溶剂并利用树脂珠制造装置进行制造。

在上述聚酰胺树脂中,尤其是在主链中结合苯基为宜。为此,能够通过对芳族二羧酸与脂族二胺进行聚合而制造出上述聚酰胺树脂,较佳地能够通过如亚丙基二胺(trimethylenediamine)和对苯二甲酸二苯酯(diphenylterephthalate)等胺与芳族二羧酸的反应进行制造。

上述聚氨酯丙烯酸酯树脂与聚酰胺树脂的混合量并不受到特殊的限定,但以1:1至5:1,较佳地以2:1至3:1的重量比进行混合为宜。当上述聚酰胺树脂的混合量过少时,会因为成形工程时的粘合剂的相容性过低而导致所制造出的陶瓷板材的耐久性下降的问题,而当聚酰胺树脂的混合量过多时,会因为粘合力的下降而导致所制造出的陶瓷板材的耐久性下降的问题。

此外,在对上述双酚类粘合剂进行混合的工程中,如上所述,能够添加如有色染料、油等。考虑到成形工程的温度以及压力,作为有色染料使用无机染料为宜,而且能够根据板材的颜色在相对于陶瓷板材整体重量的5至10重量%的范围内适当混合。此外,作为油能够使用硅油或氟碳油,其含量相对于陶瓷板材整体重量能够是在0.5重量%以下,较佳地在0.1至0.5重量%范围内为宜,通过包含微量的油,能够提升其分散性以及相容性。

此外,相对于上述混合物100重量份,将上述双酚类粘合剂在5至10重量份的范围内进行混合为宜,当粘合剂的含量过高时,不仅会导致成形性的下降,还可能根据原料的类型在所制造出的陶瓷板材中检测出有害化学物质,而当粘合剂的含量过低时,会因为粘合力的不足而导致所制造出的陶瓷板材的耐久性的下降,因此在上述范围内使用为宜。

此外,作为上述油也能够使用捕获有偶联剂的油,通过混合如上所述的油,上述偶联剂将在成形工程中融出并促进上述聚氨酯丙烯酸酯树脂与聚酰胺树脂聚合的过程,从而进一步提升粘合剂的效果。

作为偶联剂,能够适用可以促进聚氨酯丙烯酸酯树脂与聚酰胺树脂的聚合的异氰酸酯硅烷或氨基硅烷,而作为如上所述的癸烷偶联剂的实例,包括3-异氰酸根合丙基二甲基氯硅烷、3-异氰酸根合丙基三乙氧基硅烷、3-异氰酸根合丙基三甲氧基硅烷、(异氰酸甲苯酯)甲基二甲氧基硅烷中的某一个异氰酸酯硅烷;以及4-氨基丁基三乙氧基硅烷、1-氨基-2-(二甲基乙氧基甲硅烷基)丙烷、n-(2-氨基乙基)-3-氨基丙基三乙氧基硅烷、3-氨基丙基二异丙基乙氧基硅烷、3-氨基丙基二乙氧基硅烷、3-氨基丙基甲基二乙氧基硅烷、3-氨基丙基三乙氧基硅烷、双(2-羟乙基)-3-氨基丙基三乙氧基硅烷、双(甲基二乙氧基甲硅烷基丙基)胺、双(三乙氧基甲硅烷基丙基)胺、3-(2,4-二硝基苯基氨基)丙基三乙氧基硅烷、n-乙基氨基异丁基甲基二乙氧基硅烷、n-(3-甲基丙烯酰氧基-2-羟丙基)-3-氨基丙基三乙氧基硅烷、n-甲基氨基丙基甲基二甲氧基硅烷、n-甲基氨基丙基三甲氧基硅烷、n-苯基氨基甲基三乙氧基硅烷中的某一个氨基硅烷。

作为将上述偶联剂捕获到油内的方法,能够通过利用一般的水相/油相的液滴形成工程进行制造。此时,相对于液滴的整体重量,上述偶联剂的含量不超过40重量%为宜。虽然偶联剂可能并不会被完全捕获到油内,但是当上述偶联剂的混合含量超过40重量%时,可能会因为未被捕获的偶联剂的含量过多而在成形工程之前或初始阶段开始发生聚合,从而导致粘合剂分散以及粘合力下降的问题。

在一实施例中,通过对粉碎的花岗岩70重量份以及白云石30重量份进行混合而制造出了石粉混合物,接下来通过对上述石粉混合物60重量份以及炉渣粉末40重量份进行混合而制造出了混合物。接下来,通过将上述所制造出的混合物投入到球体制造机中而制造出了20至30㎜大小的球体。

将上述球体投入到电炉中并在1,350℃下进行了熔融,接下来通过将上述熔融物投入到高速涡轮机中进行了纤维化。所制造出的纤维化材料的密度为90㎏/m3,平均粗细为5μm,平均长度为120㎜。

此外,为了制造出双酚类粘合剂,通过向重量平均分子量为800的聚氧化丙烯二醇79重量份投入亚甲基二苯基二异氰酸酯35重量份进行反应(作为扩链剂使用二甘醇3重量份)而制造出了重量平均分子量为5,000的液态聚氨酯丙烯酸酯树脂。

此外,通过使亚丙基二胺75重量份与对苯二甲酸二苯酯62重量份发生反应而制造出了重量平均分子量为20,000的聚酰胺树脂。

通过以2:1的重量比对上述聚氨酯丙烯酸酯树脂以及聚酰胺树脂进行混合以及加热而制造出混合液之后,通过对其进行成形而制造出了30μm左右的树脂珠。

通过在以9:1的重量比对上述纤维化原材料与树脂珠进行混合之后利用辊轧机进行成形而制造出了板材,并委托韩国建设技术研究院对裁切成950×1,500㎜大小的板材(板材1)以及裁切成600×2,500㎜大小的板材(板材2)进行了试验评估。

按照astme330对上述陶瓷板材执行了风压试验(试验方法:4面固定)。对950×1,500㎜大小的板材的评估标准是在正压为+207.4㎏f/㎡、负压为-391.3㎏f/㎡的条件下达到15.8㎜以下,而对600×2,500㎜大小的板材的评估标准是在正压为+207.4㎏f/㎡、负压为-391.3㎏f/㎡的条件下达到10.0㎜以下。通过试验结果可以确认,板材1为10.5㎜而板材2为8.6㎜,其风压试验的结果非常优秀。

此外,按照ksfiso1182执行了阻燃性试验。在以750℃开始加热之后的20分钟之内进行了测定,要求最高温度与最终平衡温度之间的差异为20℃以下且质量减少率为30%以下。通过试验结果可以确认,适用本发明的陶瓷板材的最高温度与最终平衡温度之间的差异为10.3℃且质量减少率最大为14.5%,呈现出了满足阻燃性标准的优秀的阻燃性能。

此外,按照ksf2271执行了气体有害性试验。对燃烧气体开始流入到试片时开始到老鼠的行动停止为止的经过时间进行测定,应满足9分钟以上的时间。通过试验结果可以确认,在适用本发明的陶瓷板材中老鼠的行动停止平均时间为10分钟以上,在气体有害性方面也呈现出了优秀的结果。

此外,按照ksfiso5660-1执行了有限阻燃性试验。在开始对试片进行加热试验之后的10分钟之内进行了测定,总的热放射率应满足8mj/㎡以下,而最大热放射率连续超过200kw/㎡的时间应满足10秒以下。通过试验结果可以确认,适用本发明的陶瓷板材的总的热放射率为7.5mj/㎡,而热放射率连续超过200kw/㎡的时间为2秒,能够满足有限阻燃性能。

此外,为了进行比较,分别将通过对上述聚氨酯丙烯酸酯树脂进行成形而获得的30μm左右的树脂珠以及通过以7:1的重量比对上述聚氨酯丙烯酸酯树脂与聚酰胺树脂进行混合之后进行成形而获得的30μm左右的树脂珠作为粘合剂使用,从而制造出了与板材1相同大小的板材3以及板材4。

上述板材3、4在阻燃性、气体有害性以及有限阻燃性等特性方面都满足评估标准,但是在风压试验中板材1为15.2㎜而板材2为12.6㎜,表明其板材的强度不充分。通过如上所述的结果可以确认,根据在制造陶瓷板材时所使用的粘合剂的类型,所获得的板材的强度也将有所不同,而适用本发明的粘合剂组合物在陶瓷板材的制造方面非常有效。

此外,如果在制造板材1时以相对于陶瓷板材的整体重量添加0.2重量%的捕获有20至25重量%的硅油的3-异氰酸根合丙基二甲基氯硅烷的状态制造陶瓷板材,则风压试验的结果从最初的10.5㎜降低至9.2㎜,呈现出了显著的效果。

此外,对上述陶瓷板材(板材1)执行了氡气放射测定试验,是按照利用hnqi-15密封腔室的试验物质氡气测定方法执行了试验。在上述测定试验中,在开始对试片进行测定之后连续测定了48小时,要求满足韩国的室内氡气法定标准值即148bq/m3以下。通过上述试验结果可以确认,适用本发明的陶瓷板材的值为14.4bq/m3,呈现出了氡气法定标准值的10%以下的优秀结果。

利用如上所述的陶瓷板材安装混凝土墙面的氡气移动通道的结果,可以确认氡气没有泄漏到室内且顺利排出,这表明虽然适用本发明的陶瓷板材的密度较低,但是具有优秀的气密性。

在上述内容中结合较佳的实施形态对本发明进行了说明,但是本发明并不限定于如上所述的实施形态,而是能够在不脱离本发明之要旨的范围内由具有本发明所属技术领域之一般知识的人员进行各种变形以及变更。而如上所述的变形例以及变更例,均应该理解为包含在本发明以及所附的权利要求书的范围之内。

起点商标作为专业知识产权交易平台,可以帮助大家解决很多问题,如果大家想要了解更多知产交易信息请点击 【在线咨询】或添加微信 【19522093243】与客服一对一沟通,为大家解决相关问题。

此文章来源于网络,如有侵权,请联系删除

tips