一种球形La2CuSnO6复相陶瓷粉体及其制备方法、应用与流程
2021-01-30 23:01:28|301|起点商标网
本发明涉及复相陶瓷粉体制备
技术领域:
,尤其涉及一种球形la2cusno6复相陶瓷粉体及其制备方法、应用。
背景技术:
:传统ag/sno2在服役工作过程中存在接触电阻大,温升高等不良现象,这主要归因于二氧化锡陶瓷相的导电、导热性能较差,劣化了银二氧化锡电接触材料的综合物理性能。双钙钛矿型复合金属氧化物(化学式:a2b'b”o6型)是一种结构特殊的钙钛矿型金属氧化物,具有独特的晶体结构,灵活的“化学剪裁性”。在双钙钛矿型复合氧化物a2b'b”o6结构中,b位则出现两类过渡金属元素,元素的原子数比例为1:1,且在结构中b位原子的八面体结构由b'o6和b”o6交替排列而成,b'离子和b”离子被氧离子隔开而形成b'-o-b”的结构,进而表现出良好的半导体及电、磁性能。双钙钛矿型的la2cusno6材料因具有结构稳定、电学热学性能优异等优势已在超导材料、电极材料、太阳能电池等领域得到广泛应用,但在银基电接触功能复合材料领域中鲜有报道。现有技术中la2cusno6材料的制备多采用溶胶-凝胶法,该工艺过程中存在凝胶化反应周期,并需要额外的烧结工艺环节,粉体尺寸分布不均,合成速率低。技术实现要素:本发明为了克服现有制备工艺得到的la2cusno6粉体尺寸分布不均,导电导热性能差的问题,提供了一种球形度良好、尺寸分布均匀及导电导热性能良好的球形la2cusno6复相陶瓷粉体。本发明为了克服现有la2cusno6粉体制备工艺存在的反应周期长,合成速率低的问题,提供了一种高效、球形度可控的球形la2cusno6复相陶瓷粉体的制备方法。本发明还提供了一种球形la2cusno6复相陶瓷粉体作为银基电接触功能复合材料的应用。为了实现上述目的,本发明采用以下技术方案:一种球形la2cusno6复相陶瓷粉体,所述球形la2cusno6复相陶瓷粉体先以前驱体、络合剂制备la2cusno6溶胶,然后将溶胶水热反应熟化,再经真空冷冻干燥后制得;所述前驱体中包括la3+,cu2+和sn4+。本发明从增强相结构改性角度出发,基于溶胶凝胶法、水热法及冷冻干燥工艺各自的技术优势,提出采用溶胶辅助水热法结合冷冻干燥技术制备了形貌上呈球形、尺寸分布均匀、导电导热性能良好的la2cusno6复相陶瓷,调控前驱体原料类型、离子摩尔浓度、水热熟化制度等工艺参数实现la2cusno6复相陶瓷尺寸形貌与微观结构优化,从而制备出球形度良好、尺寸分布均匀以及导电导热性能良好的la2cusno6复相陶瓷,为其进一步在银基电接触功能复合材料领域的应用奠定基础。相比于传统的水热法与常规干燥技术,本发明利用溶胶辅助水热法结合冷冻干燥技术成功合成了球形度良好、尺寸分布均匀及导电导热性能良好的la2cusno6复相陶瓷粉体。溶胶辅助水热法避免了溶胶-凝胶法过程中存在的凝胶化反应周期,省去了常规的烧结工艺环节,提高了粉体合成速率,而且溶胶辅助技术有助于实现各反应离子在分子水平上的均匀混合,实现la2cusno6复相陶瓷粉体的尺寸均匀化合成;调控在奥斯瓦尔德熟化过程中的水热熟化制度以及冷冻干燥制备工艺参数,合成出球形度可控的la2cusno6复相陶瓷粉体。作为优选,所述前驱体为la(no3)3·6h2o、cu(no3)2·6h2o和sncl4·5h2o。作为优选,所述前驱体的化学计量摩尔比为n(la3+):n(cu2+):n(sn4+)=2:1:1。作为优选,所述络合剂由柠檬酸和赖氨酸按照摩尔比1:1复配而得;所述柠檬酸与前驱体中la3+,cu2+和sn4+的总离子摩尔比为1:1。作为优选,所述球形la2cusno6复相陶瓷粉体的平均粒径为80~110μm。一种球形la2cusno6复相陶瓷粉体的制备方法,包括以下步骤:(1)按照上述配比,配制前驱体溶液,加入络合剂,调节ph至7~12,于溶胶反应温度30~50℃条件下持续反应5~8h,形成la2cusno6溶胶;(2)将步骤(1)得到的la2cusno6溶胶于水热反应温度150~165℃条件下持续熟化反应16~18h,冷却后,经离心、洗涤,真空冷冻干燥后,即得球形la2cusno6复相陶瓷粉体。作为优选,步骤(1)中,所述前驱体溶液的浓度为0.05~0.2mol/l。作为优选,步骤(1)中,利用nh3质量浓度为24%的氨水采用逐滴滴加的方式调节ph至7。作为优选,真空冷冻干燥的冷凝温度-60~-20℃,真空度5pa,时间为6~12h。一种球形la2cusno6复相陶瓷粉体作为银基电接触功能复合材料的应用。因此,本发明具有如下有益效果:(1)本发明的溶胶辅助技术有助于实现各反应离子在分子水平上的均匀混合,实现la2cusno6复相陶瓷粉体的尺寸均匀化合成,调控在奥斯瓦尔德熟化过程中的水热熟化制度以及冷冻干燥制备工艺参数,合成的材料球形度可控;(2)采用本发明的工艺制得的球形la2cusno6复相陶瓷粉体的球形度良好、尺寸分布均匀,导电导热性能良好,为其进一步在银基电接触功能复合材料领域的应用奠定基础。附图说明图1是实施例1制得的球形la2cusno6复相陶瓷粉体低倍率下的sem图。图2是实施例1制得的球形la2cusno6复相陶瓷粉体高倍率下的sem图。图3是实施例1制得的球形la2cusno6复相陶瓷粉体(a)的xrd图谱和la2cusno6pdf卡片图谱(b)。具体实施方式下面通过具体实施例,并结合附图,对本发明的技术方案作进一步具体的说明。在本发明中,若非特指,所有设备和原料均可从市场购得或是本行业常用的,下述实施例中的方法,如无特别说明,均为本领域常规方法。实施例1(1)la2cusno6溶胶的合成:以分析纯的la(no3)3·6h2o、cu(no3)2·6h2o、sncl4·5h2o为前驱体原料,按照阳离子n(la3+):n(cu2+):n(sn4+)=2:1:1化学计量摩尔比称取相应的前驱体原料,混合后溶于去离子水中,配制成浓度为0.05mol/l的前驱体蓝色溶液。在充分搅拌的条件下,加入一定量的柠檬酸与赖氨酸复合络合剂,其中柠檬酸与赖氨酸的摩尔比为1:1;而柠檬酸与总阳离子摩尔比为1:1。待复合络合剂充分混合均匀后,利用nh3质量浓度为24%的氨水采用逐滴滴加的方式调节反应溶液ph至7,于溶胶反应温度30℃条件下持续反应5h,形成稳定均匀的la2cusno6溶胶;(2)la2cusno6复相陶瓷粉体的制备:采用量筒量取体积容量占反应釜内胆体积的80%的la2cusno6溶胶,并利用玻璃棒引流至聚四氟乙烯材质的反应釜内胆中,然后将装有la2cusno6溶胶的反应釜内胆置入反应釜腔体中,盖上反应釜盖并拧紧,放入反应烘箱内。并于水热反应温度150℃条件下持续熟化反应16h。待反应结束后,打开反应釜内胆,移除上清液后采用乙醇与去离子水反复离心清洗3次,获得黑色离心产物。然后,采用真空冷冻干燥机于冷凝温度-60℃、真空度5pa条件下进行真空冷冻干燥8h,制备出黑色la2cusno6复相陶瓷粉体。图1和图2是la2cusno6复相陶瓷粉体形貌照片,粉体粒度均匀,平均粒径为80~110μm,球形度良好。图3是la2cusno6复相陶瓷粉体的xrd图谱,粉体结晶度好,纯度高,无杂相。实施例2(1)la2cusno6溶胶的合成:以分析纯的la(no3)3·6h2o、cu(no3)2·6h2o、sncl4·5h2o为前驱体原料,按照阳离子n(la3+):n(cu2+):n(sn4+)=2:1:1化学计量摩尔比称取相应的前驱体原料,混合后溶于去离子水中,配制成浓度为0.2mol/l的前驱体蓝色溶液。在充分搅拌的条件下,加入一定量的柠檬酸与赖氨酸复合络合剂,其中柠檬酸与赖氨酸的摩尔比为1:1;而柠檬酸与总阳离子摩尔比为2.5:1。待复合络合剂充分混合均匀后,利用nh3质量浓度为28%的氨水采用逐滴滴加的方式调节反应溶液ph至12,于溶胶反应温度50℃条件下持续反应8h,形成稳定均匀的la2cusno6溶胶;(2)la2cusno6复相陶瓷粉体的制备采用量筒量取体积容量占反应釜内胆体积的80%的la2cusno6溶胶,并利用玻璃棒引流至聚四氟乙烯材质的反应釜内胆中,然后将装有la2cusno6溶胶的反应釜内胆置入反应釜腔体中,盖上反应釜盖并拧紧,放入反应烘箱内。并于水热反应温度180℃条件下持续熟化反应22h。待反应结束后,打开反应釜内胆,移除上清液后采用乙醇与去离子水反复离心清洗2次,获得黑色离心产物。然后,采用真空冷冻干燥机于冷凝温度-20℃、真空度5pa条件下进行真空冷冻干燥12h,制备出平均粒径为80μm的黑色la2cusno6复相陶瓷粉体。实施例3(1)la2cusno6溶胶的合成:以分析纯的la(no3)3·6h2o、cu(no3)2·6h2o、sncl4·5h2o为前驱体原料,按照阳离子n(la3+):n(cu2+):n(sn4+)=2:1:1化学计量摩尔比称取相应的前驱体原料,混合后溶于去离子水中,配制成浓度为0.15mol/l的前驱体蓝色溶液。在充分搅拌的条件下,加入一定量的柠檬酸与赖氨酸复合络合剂,其中柠檬酸与赖氨酸的摩尔比为1:1;而柠檬酸与总阳离子摩尔比为1.5:1。待复合络合剂充分混合均匀后,利用nh3质量浓度为26%的氨水采用逐滴滴加的方式调节反应溶液ph至9,于溶胶反应温度40℃条件下持续反应6h,形成稳定均匀的la2cusno6溶胶;(2)la2cusno6复相陶瓷粉体的制备:采用量筒量取体积容量占反应釜内胆体积80%的la2cusno6溶胶,并利用玻璃棒引流至聚四氟乙烯材质的反应釜内胆中,然后将装有la2cusno6溶胶的反应釜内胆置入反应釜腔体中,盖上反应釜盖并拧紧,放入反应烘箱内。并于水热反应温度165℃条件下持续熟化反应18h。待反应结束后,打开反应釜内胆,移除上清液后采用乙醇与去离子水反复离心清洗2-3次,获得黑色离心产物。然后,采用真空冷冻干燥机于冷凝温度(-40℃)、真空度5pa条件下进行真空冷冻干燥6h,制备出平均粒径为110μm黑色la2cusno6复相陶瓷粉体。对比例对比例采用sno2陶瓷相材料。对实施例1-3的la2cusno6复相陶瓷粉体和对比例的sno2陶瓷相材料的电学、热学性能指标做检测,结果如表1所示:表1.检测结果性能指标载流子迁移率/(cm2·v-1·s-1)热导率/w·m-1k-1实施例18245.870.6542实施例243419.20.8276实施例353163.20.9229对照组(sno2陶瓷相)114.20.4758由表1可以看出,本发明的实施例1-3制备的la2cusno6复相陶瓷的载流子迁移率及热导率特性均明显高于sno2陶瓷相,有望作为一种新型的增强相材料体系,发挥其在银基电接触功能复合材料领域中的应用价值。以上所述仅为本发明的较佳实施例,并非对本发明作任何形式上的限制,在不超出权利要求所记载的技术方案的前提下还有其它的变体及改型。当前第1页1 2 3 
起点商标作为专业知识产权交易平台,可以帮助大家解决很多问题,如果大家想要了解更多知产交易信息请点击 【在线咨询】或添加微信 【19522093243】与客服一对一沟通,为大家解决相关问题。
此文章来源于网络,如有侵权,请联系删除
热门咨询
tips