一种用于3D打印直写成形陶瓷坯体的保形干燥方法与流程
本发明属于陶瓷制备技术领域,具体涉及一种用于3d打印直写成形陶瓷坯体的保形干燥方法。
背景技术:
多孔陶瓷具有比表面积大、吸附量高、化学性质稳定等优点,可广范应用在离子交换、吸附、过滤与分离、催化剂、传感器、轻质化设计等领域。3d打印技术允许精确地制造具有复杂结构和优化性能的陶瓷器件,简单化、个性化制造、生产成本低是此方法的显著优点。直写成型技术(diw)是3d打印技术的一种,diw打印用的水基陶瓷浆料具有广泛的应用,但是diw打印出的陶瓷零件在后处理过程中容易产生裂纹与变形,很难通过后续工艺进行弥补;因此diw打印陶瓷的后处理技术作为制备过程的重要难点,直接影响到diw打印陶瓷零件的最终性能。
目前对于传统工艺制备的陶瓷素坯的干燥方法有很多,包括冷冻干燥、多步干燥、自然干燥法等,经过对3d打印陶瓷零件大量的实验发现:冷冻干燥虽然能减少形变,但是干燥后的陶瓷零件强度太低,冷冻干燥工艺复杂,成本高;多步干燥对干燥设备的要求较高,工艺复杂,成本高;自然干燥法干燥后的陶瓷素坯翘曲变形、开裂严重,严重影响产品的外形尺寸精度及成品率。
中国专利(申请号200710103657.0,名称为:一种长棒状陶瓷坯体的干燥方法)只适用于长棒状陶瓷坯体的干燥,且需将棒状陶瓷捆扎,工艺复杂且产量低。中国专利(申请号201910497733.3,名称为:陶瓷素坯的微变形快速干燥方法)中,陶瓷素坯干燥工艺步骤复杂,该铺压工艺不适用于3d打印陶瓷的干燥,不适用于大批量产品生产。
技术实现要素:
为了克服现有上述现有技术的缺点,本发明的目的在于提供了一种用于3d打印直写成形陶瓷坯体的保形干燥方法,实现3d打印陶瓷的可控变形、微变形,大幅度提高3d打印陶瓷的力学性能与比表面积。
为了达到上述目的,本发明采取的技术方案为:
一种用于3d打印直写成形陶瓷坯体的保形干燥方法,包括以下步骤:
1)为了减少陶瓷初坯底部的应力,便于和打印底板分离、保湿,防止陶瓷初坯开裂,在打印底板上铺设一层疏水薄膜,在疏水薄膜上3d打印陶瓷初坯;
2)3d打印完成后,将陶瓷初坯与打印底板一起放入恒温恒湿环境中,根据matlab计算拟合实验数据所得的翘曲度关系式选择恒温恒湿干燥工艺应设置的温度与湿度:
式中,w为陶瓷初坯干燥后的翘曲度(%),t对应的恒温温度(℃),h为相对湿度(%),s为固相含量(%),固相含量为18~22.29%,恒温温度选择范围为25℃~35℃,相对湿度选择范围为40~92%,干燥6小时;
3)使陶瓷初坯与疏水薄膜分离,对陶瓷初坯继续进行步骤2)中的恒温恒湿干燥工艺,干燥12~15小时;
4)对陶瓷初坯继续进行步骤2)中的恒温恒湿干燥工艺,将恒温温度设置为25℃,相对湿度设置为40%,继续恒温恒湿干燥3小时;
5)将恒温恒湿干燥后的陶瓷初坯放入烘箱中,温度设置为100℃,干燥10~20分钟。
所述的步骤5)中恒温恒湿干燥工艺结束后,将陶瓷初坯在高温烧结炉中进行焙烧工艺,以4℃/min的升温速度升至400~800℃,保温3~6小时,随炉冷却至室温。
所述的步骤1)中3d打印的陶瓷为氧化铝、氧化硅、堇青石、莫来石等各种陶瓷,其中优选以拟薄水铝石为浆料主体材料制备的氧化铝陶瓷。
所述的步骤1)中的疏水薄膜为聚乙烯(pe)、聚丙烯(pp)、聚碳酸酯、聚丙烯腈、聚酰胺(pa)、氟化聚乙烯等疏水材料制成的薄膜。
所述的步骤2)中所得陶瓷初坯的翘曲度在0.25~8.628%之内,步骤5)结束后所得陶瓷初坯的实际翘曲度与步骤2)中理论值的误差在±10%之内。
所述的步骤3)中陶瓷初坯的干燥需要近似零翘曲,对应的恒温温度选择为25℃时,相对湿度选择为70%,经过步骤1)~5)干燥后的陶瓷初坯的翘曲度低至0.25%;对应的恒温温度选择为35℃时,相对湿度选择为92%,经过步骤1)~5)干燥的陶瓷初坯的翘曲度低至0.25%。
所述的步骤5)中恒温恒湿干燥工艺工艺结束后的所得陶瓷初坯压碎强度为70~90n/cm,经过焙烧工艺的陶瓷初坯的压碎强度为120~200n/cm,比表面积为100~232m2/g。
本发明与现有技术相比,具有以下优点及有益效果:
1.本发明针对3d打印中的直写成型技术提出了一种陶瓷坯体的可控变形、高强度的干燥方法。本发明通过在打印底板铺覆疏水薄膜,控制干燥过程中的湿度温度的干燥方法,明显控制了干燥后陶瓷初坯的翘曲度,大大简化了陶瓷初坯的干燥工艺,降低了生产陶瓷零件的成本,大大缩短了产品的干燥工艺周期,可以实现复杂陶瓷零件的大批量、快速干燥。
2.本发明有效地控制和降低了陶瓷初坯干燥工艺中的翘曲变形,对于相同陶瓷浆料打印的陶瓷初坯,若不采用本发明的干燥工艺只进行自然干燥,干燥过程中陶瓷初坯将会开裂;采用了本发明的干燥工艺后,陶瓷初坯干燥后的翘曲度可降至0.25%。本发明的干燥工艺会大大提高陶瓷的成型尺寸精度,大大提高了陶瓷零件的成品率。
3.本发明有效地提高了陶瓷初坯干燥后的力学性能,提高了陶瓷零件高温焙烧后的强度,降低了陶瓷的焙烧温度,提升了陶瓷的比表面积。使用陶瓷浆料3d打印得到的陶瓷初坯,进过本发明的干燥工艺,压碎强度可以达到70~90n/cm;经过高温焙烧后,最终所得陶瓷的压碎强度可达到200n/cm,比表面积可达到232m2/g。
具体实施方式
下面结合实施例对本发明方法作详细描述。
实施例1,一种用于3d打印直写成形陶瓷坯体的保形干燥方法,包括以下步骤:
1)取20g拟薄水铝石、2.4g10%稀醋酸、18g蒸馏水、0.075g田菁粉,以100r/min的速度机械搅拌30min后获得氧化铝陶瓷浆料;将氧化铝陶瓷浆料装入直写成型3d打印机中,为了减少陶瓷初坯底部的应力,便于和打印底板分离、保湿,防止陶瓷初坯开裂,在打印底板上平整地铺上一层聚乙烯pe疏水薄膜,在疏水薄膜上3d打印陶瓷初坯;
2)3d打印完成后,将陶瓷初坯与打印底板一起放入恒温恒湿环境中,根据matlab计算拟合实验数据所得的翘曲度关系式选择恒温恒湿干燥工艺应设置的温度与湿度:
式中,w为陶瓷初坯干燥后的翘曲度(%),t对应的恒温温度(℃),h为相对湿度(%),s为固相含量(%),其中固相含量s为22.29%,选择恒温温度t为25℃,相对湿度h为70%,干燥6小时,翘曲度理论值为0.28684%;
3)使陶瓷初坯与疏水薄膜分离,对陶瓷初坯继续进行步骤2)中的恒温恒湿干燥工艺,干燥12小时;
4)对陶瓷初坯继续进行步骤2)中的恒温恒湿干燥工艺,将恒温温度设置为25℃,相对湿度设置为40%,继续恒温恒湿干燥3小时;
5)将恒温恒湿干燥后的陶瓷初坯放入烘箱中,温度设置为100℃,干燥20分钟;
6)将恒温恒湿干燥工艺结束后的陶瓷初坯放入高温烧结炉中进行焙烧工艺,以4℃/min的升温速度升至400℃,保温3h,随炉冷却至室温。
本实施例经过步骤5)恒温恒湿干燥工艺的3d打印氧化铝陶瓷初坯的翘曲度为0.25%(按照国家标准gb/t3810.2-2016测得),初坯压碎强度为70n/cm;经过步骤6)焙烧工艺所得的3d打印氧化铝陶瓷压碎强度为120n/cm,(按照美国标准astmd4179测得),bet比表面积(氮气吸附测得)为232m2/g。
实施例2,一种用于3d打印直写成形陶瓷坯体的保形干燥方法,包括以下步骤:
1)取20g拟薄水铝石、2.4g10%稀醋酸、18g蒸馏水、0.075g田菁粉,以100r/min的速度机械搅拌30min后获得氧化铝陶瓷浆料;将氧化铝陶瓷浆料装入直写成型3d打印机中,在打印底板上平整地铺上一层聚丙烯pp疏水薄膜,在疏水薄膜上3d打印陶瓷初坯;
2)3d打印完成后,将陶瓷初坯与打印底板一起放入恒温恒湿环境中,根据matlab计算拟合实验数据所得的翘曲度关系式选择恒温恒湿干燥工艺应设置的温度与湿度:
式中,w为陶瓷初坯干燥后的翘曲度(%),t对应的恒温温度(℃),h为相对湿度(%),s为固相含量(%),此时固相含量s为22.29%,选择恒温温度t为25℃,相对湿度h为40%,干燥6小时,翘曲度理论值为5.11668%;
3)使陶瓷初坯与疏水薄膜分离,对陶瓷初坯继续进行步骤2)的恒温恒湿干燥工艺,干燥12小时;
4)对陶瓷初坯继续进行步骤2)中的恒温恒湿干燥工艺,将恒温温度设置为25℃,相对湿度设置为40%,继续恒温恒湿干燥3小时;
5)将恒温恒湿干燥后的陶瓷初坯放入烘箱中,温度设置为100℃,干燥20分钟;
6)将恒温恒湿干燥工艺结束后的陶瓷初坯放入高温烧结炉中进行焙烧工艺,以4℃/min的升温速度升至800℃,保温3h,随炉冷却至室温。
本实施例经过步骤5)恒温恒湿干燥工艺的3d打印氧化铝陶瓷初坯的翘曲度为5.12124%,压碎强度为70n/cm;经过步骤6)焙烧工艺所得氧化铝陶瓷的压碎强度为200n/cm,比表面积为100m2/g。
实施例3,一种用于3d打印直写成形陶瓷坯体的保形干燥方法,包括以下步骤:
2)取20g拟薄水铝石、2.4g10%稀醋酸、18g蒸馏水、0.075g田菁粉,以100r/min的速度机械搅拌30min后获得氧化铝陶瓷浆料;将氧化铝陶瓷浆料装入直写成型3d打印机中,在打印底板上平整地铺上一层氟化聚乙烯疏水薄膜,在疏水薄膜上3d打印陶瓷初坯;
2)3d打印完成后,将陶瓷初坯与打印底板一起放入恒温恒湿环境中,根据matlab计算拟合实验数据所得的翘曲度关系式选择恒温恒湿干燥工艺应设置的温度与湿度:
式中,w为陶瓷初坯干燥后的翘曲度(%),t对应的恒温温度(℃),h为相对湿度(%),s为固相含量(%),此时固相含量s为22.29%,选择恒温温度t为35℃,相对湿度h为92%,干燥6小时,翘曲度理论值为0.27630%;
3)使陶瓷初坯与疏水薄膜分离,对陶瓷初坯继续进行步骤2)的恒温恒湿干燥工艺,干燥15小时;
4)对陶瓷初坯继续进行步骤2)中的恒温恒湿干燥工艺,将恒温温度设置为25℃,相对湿度设置为40%,继续恒温恒湿干燥3小时;
5)将恒温恒湿干燥后的陶瓷初坯放入烘箱中,温度设置为100℃,干燥20分钟;
6)将恒温恒湿干燥工艺结束后的陶瓷初坯放入高温烧结炉中进行焙烧工艺,以4℃/min的升温速度升至500℃,保温3h,随炉冷却至室温。
本实施例经过步骤5)恒温恒湿干燥工艺的3d氧化铝陶瓷初坯的翘曲度为0.25010%,压碎强度为75n/cm;经过步骤6)焙烧工艺的氧化铝陶瓷的压碎强度为130n/cm,比表面积为181m2/g。
以上所述,仅为本发明较佳的实施例,但本发明的保护范围不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。
起点商标作为专业知识产权交易平台,可以帮助大家解决很多问题,如果大家想要了解更多知产交易信息请点击 【在线咨询】或添加微信 【19522093243】与客服一对一沟通,为大家解决相关问题。
此文章来源于网络,如有侵权,请联系删除