HI,欢迎来到起点商标网!
24小时服务QQ:2880605093

一种高温稳定相碳化物陶瓷增强的碳化硅涂层及其制备方法与流程

2021-01-30 20:01:15|418|起点商标网

[0001]
本发明属于陶瓷涂层领域,具体涉及一种高温稳定相碳化物陶瓷增强的碳化硅涂层及其制备方法。


背景技术:

[0002]
近年来,碳材料发展迅速,尤其是c/c复合材料以其高强度、高模量、高断裂韧性、高导热、隔热优异和低密度等优异特性,在机械、电子、化工、冶金和核能等领域中得到广泛应用,并且在航天、航空和国防领域中的关键部件上大量应用。但在氧化气氛下,碳材料就会迅速被氧化,导致材料毁灭性破坏,大大制约了其应用。因此,对碳材料提供抗氧化保护是十分必要的。
[0003]
碳化硅陶瓷涂层,具有耐高温、耐化学腐蚀、导热系数高、热膨胀系数低、介电及透波等优点,是目前陶瓷基复合材料抗氧化涂层最常用的材料。
[0004]
申请公布号为cn103722849a的中国发明专利公开了一种sic/ta/c/ta/sic多层抗氧化耐高温涂层及其制备方法。由sic层、ta层和c层叠层组成,叠层的次序依次为sic层、ta层、c层、ta层、sic层,循环1~3次,c层两侧均为ta层,最内层和最外层均为sic层,通过化学气相沉积法在所制备的sic层上依次沉积ta层,c层,ta层和sic层,得到sic/ta/c/ta/sic多层防氧化耐高温涂层。所获得的陶瓷涂层,具有致密度高,耐高温、抗氧化等优点。
[0005]
申请公布号为cn108314468a的中国发明专利公开了纳米金属粉末增强的碳化硅/石墨复合陶瓷涂层及其制备方法,它包括碳化硅微粉100份、纳米金属粉末2~8份、超细石墨粉末2~8份、粘接剂5~10份和分散剂1~3份;它还公开了制备方法,包括以下步骤:s1、研磨混合;s2、湿法球磨;s3、复合粉体;s4、涂层制备。所获得的复合陶瓷涂层,具有陶瓷材料的耐高温、耐磨和耐腐蚀等优点,同时兼具金属材料的强度和韧度,是新型复合陶瓷涂层材料。
[0006]
申请公布号为cn103396169a的中国发明专利公开了一种珠串状纳米线增韧增强陶瓷涂层的制备方法,采用原位合成法制备珠串状sic纳米线增韧增强si-cr陶瓷涂层,借助原位合成的珠串状纳米线自身所具有的特殊增韧功效以及与内涂层之间形成的强界面结合,可以降低涂层的开裂趋势,制备出结构致密的陶瓷涂层。所制备的陶瓷涂层在1500℃的静态空气中的有效防氧化时间由背景技术的40h提高到165~185h。
[0007]
综上所述,陶瓷涂层在陶瓷基复合材料的保护领域应用越来越广泛,但是陶瓷涂层本身的脆性大,易产生热应力,易产生裂纹,不利于其推广应用。因此,陶瓷涂层强韧化成为解决其推广应用问题的关键。


技术实现要素:

[0008]
为解决上述问题,本发明的目的在于提供一种高温稳定相碳化物陶瓷增强的碳化硅涂层,既缓解了陶瓷涂层的热失配,又强化了陶瓷涂层的力学性能。
[0009]
以高温相sic颗粒、zrc颗粒、hfc颗粒以及tac颗粒增强的致密的β-sic涂层,增强
了涂层的韧性;以c/c复合材料或石墨材料为基体,在其表面制备涂层,与基体接触的面为涂层内表面,涂层从内向外,增强颗粒依次为sic颗粒、zrc颗粒、hfc颗粒和tac颗粒,其热膨胀系数递增,有效缓解了涂层热失配,降低了涂层内的热应力,提高了涂层的的抗热振性。
[0010]
一种高温稳定相碳化物陶瓷增强的碳化硅涂层,其特征在于所述的碳化物颗粒粒径为0.01μm~0.5μm,纯度大于99%,碳化物颗粒占涂层的体积分数为5~25%,所述的各种碳化物颗粒增强碳化硅涂层厚度为1μm~100μm。。
[0011]
本发明还提供一种上述sic涂层的制备方法,其特征在于包括如下顺序的步骤:
[0012]
(1)将c/c复合材料或石墨坯体表面打磨抛光后用无水乙醇超声清洗,再进行烘干处理;
[0013]
(2)将sic微粉均匀敷在基体表面,采用化学气相沉积方法沉积β-sic涂层,沉积条件如下:以三氯甲基硅烷为前驱体,氩气为稀释气,氢气为载气,沉积温度800~1200℃;
[0014]
(3)将zrc微粉均匀敷在(2)所得样品表面,采用化学气相沉积方法沉积β-sic涂层,沉积条件如下:以三氯甲基硅烷为前驱体,氩气为稀释气,氢气为载气,沉积温度900~1100℃;
[0015]
(4)将hfc微粉均匀敷在(3)所得样品表面,采用化学气相沉积方法沉积β-sic涂层,沉积条件如下:以三氯甲基硅烷为前驱体,氩气为稀释气,氢气为载气,沉积温度800~1200℃;
[0016]
(5)将tac微粉均匀敷在(4)所得样品表面,采用化学气相沉积方法沉积β-sic涂层,沉积条件如下:以三氯甲基硅烷为前驱体,氩气为稀释气,氢气为载气,沉积温度800~1300℃。
[0017]
有益效果
[0018]
与现有技术相比,本发明的有益效果在于:(1)化学气相沉积法得到的颗粒增强β-sic涂层致密度高,具有优异的抗氧化性能(2)高温相碳化物颗粒增强的β-sic涂层韧性得到增强,不易产生裂纹;(3)涂层从内向外热膨胀系数逐渐增大,有利于缓解热失配。制备得到的高温稳定相碳化物陶瓷增强的碳化硅涂层,能够适用于航空航天等领域。
具体实施方式
[0019]
以下实施例是对本发明的进一步说明,而不是限制本发明的范围。
[0020]
实施例:
[0021]
一种高温稳定相碳化物陶瓷增强的碳化硅涂层,其特征在于基体为c/c复合材料,涂层结构从内向外依次为sic颗粒增强碳化硅涂层、zrc颗粒增强碳化硅涂层、hfc颗粒增强碳化硅涂层、tac颗粒增强碳化硅涂层;所述的α-sic颗粒粒径平均为0.08μm,纯度为99.9%,sic颗粒增强涂层厚度为10μm,sic颗粒体积分数为7%;所述的zrc颗粒粒径平均为0.1μm,纯度为99.9%,zrc颗粒增强涂层厚度为10μm,zrc颗粒体积分数为10%;所述的hfc颗粒粒径为0.2μm,纯度为99.9%,hfc颗粒增强涂层厚度为10μm,hfc颗粒体积分数为12%;tac颗粒粒径平均为0.4μm,纯度为99.9%,tac颗粒增强涂层厚度为20μm,tac颗粒体积分数为18%。
[0022]
制备上述的涂层,按照如下的顺序:
[0023]
(1)预处理c/c复合材料:将c/c复合材料表面打磨抛光后用无水乙醇超声清洗,再
进行烘干处理;
[0024]
(2)将α-sic微粉均匀敷在基体表面,采用化学气相沉积方法沉积β-sic涂层,沉积条件如下:以三氯甲基硅烷为前驱体,氩气为稀释气,氢气为载气,沉积温度900℃;
[0025]
(3)将zrc微粉均匀敷在(2)所得样品表面,采用化学气相沉积方法沉积β-sic涂层,沉积条件如下:以三氯甲基硅烷为前驱体,氩气为稀释气,氢气为载气,沉积温度1000℃;
[0026]
(4)将hfc微粉均匀敷在(3)所得样品表面,采用化学气相沉积方法沉积β-sic涂层,沉积条件如下:以三氯甲基硅烷为前驱体,氩气为稀释气,氢气为载气,沉积温度1100℃;
[0027]
(5)将tac微粉均匀敷在(4)所得样品表面,采用化学气相沉积方法沉积β-sic涂层,沉积条件如下:以三氯甲基硅烷为前驱体,氩气为稀释气,氢气为载气,沉积温度1200℃。
[0028]
该涂层体系具有良好的强度和韧性,能够耐2000℃长时间热冲击。
[0029]
上述描述仅是对本发明较佳实施例的描述,并非是对本发明范围的任何限定。任何熟悉该领域的普通技术人员根据上述揭示的技术内容,对α-sic颗粒增强碳化硅涂层、zrc颗粒增强碳化硅涂层、hfc颗粒增强碳化硅涂层、tac颗粒增强碳化硅涂层重新排序,做出的任何变更或修饰均应当视为等同的有效实施例,均属于本发明技术方案保护的范围。

起点商标作为专业知识产权交易平台,可以帮助大家解决很多问题,如果大家想要了解更多知产交易信息请点击 【在线咨询】或添加微信 【19522093243】与客服一对一沟通,为大家解决相关问题。

此文章来源于网络,如有侵权,请联系删除

tips