HI,欢迎来到起点商标网!
24小时服务QQ:2880605093

一种高强韧无粘结相纳米晶硬质合金的制备方法与流程

2021-01-30 19:01:43|291|起点商标网

[0001]
本发明属于硬质合金材料技术领域,具体涉及设计一种高强韧无粘结相纳米晶硬质合金的制备方法。


背景技术:

[0002]
纳米晶硬质合金主要由硬质相碳化钨(wc)和金属粘结相组成,兼具高硬度、高强度、高耐磨性、高韧性、高热导率及优良的抗热震性、抗氧化性等性能,广泛应用于航空航天、汽车工业、精密制造、电子工业、国防军工等技术领域。然而,由于粘结相的熔点相对较低,导致硬质合金在高温环境下的硬度明显降低;此外,具有较低抗腐蚀和抗氧化性的粘结相,容易优先腐蚀而导致材料失效。无粘结相纳米晶硬质合金由于缺乏金属粘结相,具有比常规纳米晶硬质合金更高的硬度、耐磨性和更优异的耐高温性、耐腐蚀性、抗氧化性及红硬性,在精密光学模具、特种耐磨材料、精密切割刀具及零件、拉拔模具等要求高精度、高抛光性、高抗变形性、高硬度和高耐腐蚀性环境领域具有极其独特的优势。
[0003]
目前无粘结相纳米晶硬质合金的研究和开发主要面临着两大瓶颈:一是硬质相wc具有较强的能量共价化学键、高熔点(2900℃)和低的自扩散系数,很难使合金致密化;二是wc晶粒的异常长大和亚碳化物w
2
c的形成导致合金的弯曲强度和断裂韧性不理想。近些年,研究者们通过机械球磨法在无粘结相纳米晶硬质合金中加入少量金属氧化物(meo)作为第二相,显著促进其致密化进程和提高其综合力学性能。然而,这种制备方法存在周期长、制备工艺复杂、球磨混合过程中容易引入杂质以及金属氧化物难以均匀分布等缺点,导致制备的烧结体的综合力学性能不佳。
[0004]
溶液燃烧合成(scs)是一种简单、快速、节能的材料制备方法,它利用反应物(氧化剂和还原剂)之间的自蔓延燃烧反应,在较低的温度诱发下即能自发发生反应。燃烧反应过程中,放出的大量气体和热量使反应物能够充分分散、达到分子水平的混合,所得产物成分均匀,极其适用于多组分氧化物纳米粉体的制备。放电等离子烧结(sps)是一种经济、节能、高效、环保的烧结方式,具有升降温速率快、保温时间短、致密化程度高以及降低烧结温度、改善微观组织净化颗粒表面等优点。基于以上考虑,本发明根据以上两种方法的协同作用,提供一种通过溶液燃烧合成法制备纳米氧化钨/其他金属氧化物/碳复合粉体,再通过sps烧结技术直接合成添加金属氧化物的无粘结相纳米晶硬质合金的方法。该方法快速简便、成本低、易于产业化,并且所制得的材料性能优异。目前为止,采用该方法制备无粘结相纳米晶硬质合金方面的研究还未见有报道。


技术实现要素:

[0005]
本发明的目的在于针对现有技术的不足,提供一种高强韧无粘结相纳米晶硬质合金的制备方法。该方法制备工艺简单,可操控性强,成本低廉,容易实现规模化生产,制备的无粘结相纳米晶硬质合致密性好,综合力学性能好。
[0006]
一种高强韧无粘结相纳米晶硬质合金的制备方法,具体步骤:
[0007]
(1)溶液配制:将钨源、氧化剂、金属硝酸盐、有机燃料和可溶性有机碳源按照一定的比例称重后置于烧杯中,加适量去离子水,用玻璃棒揽拌使各种原料充分溶解形成均匀混合水溶液;
[0008]
(2)前驱体制备:将步骤(1)配置好的水溶液加热发生燃烧反应,溶液挥发、浓缩,逐渐形成凝胶状物,并伴随着分解放出大量气体,反应完成后得到蓬松的纳米级氧化钨/其他金属氧化物/碳混合前驱体粉末;
[0009]
(3)模压:将步骤(2)制备的前驱体粉末经过充分研磨后直接倒入圆柱形石墨模具中,两端加上石墨压头,利用液压机对粉末进行模压压实;
[0010]
(4)sps原位合成:将步骤(3)制得的模坯初体放入保温装置并置于放电等离子烧结炉中,抽炉内真空至4~10pa后,启动烧结按钮,以70~100℃/min的速率升温,整个制备过程包括预热、还原和碳化、快速烧结、保温四个阶段的反应,反应结束后随炉冷却,获得具有高致密度和良好综合力学性能的添加金属氧化物的无粘结相纳米晶硬质合金。
[0011]
进一步地,步骤(1)中所述的钨源、氧化剂、有机燃料、可溶性有机碳源的摩尔比为1:(20~25):(10~20):(5.4~13.1),金属硝酸盐的添加量通过复合粉末目标成分(wc-x wt%meo,x=1~15)计算获得。
[0012]
进一步地,步骤(1)中所述的钨源为可溶性高的偏钨酸铵。
[0013]
进一步地,步骤(1)中所述的氧化剂为硝酸、硝酸铵中的任意一种。
[0014]
进一步地,步骤(1)中所述的金属硝酸盐为硝酸铝、硝酸镁、硝酸锆、硝酸钇、硝酸镧中的至少一种,其中每种金属硝酸盐的添加量不低于所有金属硝酸盐添加总量的20%。
[0015]
进一步地,步骤(1)中所述的有机燃料为甘氨酸、尿素、柠檬酸、卡巴肼、氨基乙酸中的任意一种或两种。
[0016]
进一步地,步骤(1)中所述的可溶性有机碳源为葡萄糖、蔗糖、淀粉中的任意一种。
[0017]
进一步地,步骤(2)中所述的溶液燃烧合成法制备前驱体反应过程中需自上而下通入氨气,氨气气流流速为0.1l/min~0.6l/min。
[0018]
进一步地,步骤(3)中所述的模压压强为10~20mpa,保压时间为1~3min。
[0019]
进一步地,步骤(4)中所述的预热阶段,升温速率为90℃/min。
[0020]
进一步地,步骤(4)中所述的还原和碳化阶段,反应温度为950~1050℃,保温时间为10~15min。
[0021]
进一步地,步骤(4)中所述的快速烧结阶段,升温速率为80℃/min,模压从10mpa增加至40~70mpa,温度从950~1050℃升高至1250~1600℃。
[0022]
进一步地,步骤(4)中所述的保温阶段,模压为40~70mpa,反应温度为1250~1600℃,保温时间为3~5min。
[0023]
进一步地,步骤(4)中所述的冷却阶段,烧结完毕后,在带电、保压的条件下,以3℃/min的降温速率,降温至1200℃,保温1~2min;接着以5℃/min的降温速率,降温至1000℃,保温1~2min;然后断电快冷至50℃以下,得到无粘结相纳米晶硬质合金。
[0024]
进一步地,步骤(4)制得的无粘结相纳米晶硬质合金中wc平均晶粒尺寸为100~200nm,合金相对密度≥98.5%,硬度为2420~2895kg/mm
2
,断裂韧性为12.6~15.8mpa
·
m
1/2
,抗弯强度为1335~1527mpa。
[0025]
本发明的技术有以下的优势:
[0026]
(1)本发明溶液燃烧合成反应过程中释放出大量热量和气体,使形成的前驱体粉末疏松、多孔、易碎、不易团聚,比表面积髙;并且由于该方法可以在液相中实现各组分在原子、分子级别上的均匀混合,使得反应后粒度细小的金属氧化物能够均匀“镶嵌”于碳基体中。根据粉末遗传性,以上特点在经过放电等离子烧结后能继续保持,再结合sps烧结具有加热均匀,生产效率高,可以得到组织细小、均匀、高致密度的材料等优点,从而可使得最终产物能够继续保持晶粒细小、高比表面积的自然状态,且金属氧化物不被碳化,均匀分布于碳化钨基体中,为高性能无粘结相纳米晶硬质合金的制备提供了一种新思路。
[0027]
(2)本发明在溶液燃烧合成反应过程中通入氨气,一方面可以营造贫氧环境,防止出现由于碳过烧引起的产物成分难以控制现象;另一方面,溶液ph值影响前驱体分解,对产物的性状有重要影响,通入适量的氨气可以调节前驱体溶液的ph值,有助于得到蓬松、分散性好的前驱体粉末;
[0028]
(3)本发明通过溶液燃烧合成法在前驱体粉末中加入少量金属氧化物(al
2
o
3
、zro
2
、y
2
o
3
、la
2
o
3
和mgo)作为第二相,这些第二相的加入能够增加体系的晶界扩散和表面扩散,从而显著加速烧结致密化进程;同时,al
2
o
3
和la
2
o
3
对wc晶粒生长有抑制作用,由于尺寸效应的作用,晶界面积增大,抗裂纹扩张阻力提高,从而使材料获得优异的断裂韧性、抗弯强度和硬度;此外,zro
2
、al
2
o
3
和mgo均能显著提高无粘结相纳米晶硬质合金的韧性,其中zro
2
通过相变增韧机制增韧,产物中al
2
o
3
和mgo以颗粒形式存在时通过颗粒弥散增韧机制增韧,产物中al
2
o
3
和mgo以晶须形式存在时则通过晶须增韧机制增韧。
[0029]
(4)本发明基于溶液燃烧合成法中原料种类和配比直接影响反应点火温度、燃烧温度、燃烧速度和产生气体的量以及放热量的大小等燃烧特征量的原理,可根据实际应用对材料性能的需求,通过设计原料种类和配比在较大范围内调控前驱体的成分、形貌及颗粒尺寸,尤其是第二相金属氧化物的形貌和含量对无粘结相纳米晶硬质合金的致密化和力学性能有重要影响;
[0030]
(5)本发明通过溶液燃烧合成法制备出氧化钨/其他金属氧化物/碳复合前驱体粉末后,直接在sps系统内还原-碳化并快速烧结致密化制备无粘结相纳米晶硬质合金,中间不需要通过其他设备进行碳热还原合成碳化钨/其他金属氧化物,避免了干燥和长时间锻烧等过程,显著简化工艺流程、缩短生产周期、降低生产成本;同时,还避免了其他杂质的引入,提高产物性能;
[0031]
(6)本发明采用分步骤、台阶式的烧结及冷却工艺,不但减少了纳米晶硬质合金制备过程中发生晶粒异常长大的几率,还避免了因反应速率过快导致的材料内外收缩不均,使材料性能变差等问题,从而有利于保持其微观结构的纳米性、均匀性和稳定性,提高合金的力学性能;
[0032]
(7)本发明采用的溶液燃烧合成法是利用原料自身的燃烧放热即可达到反应所需温度,进行自维持化学反应,燃烧合成速度快、时间短,且制备的前驱体粉末为纳米级,反应活性高,能有效降低反应温度,后续采用sps烧结技术可进一步利用该特点,并结合自身升温速度快,烧结温度低,烧结时间短的协同作用,从而显著提高反应效率,省时省效,极其有利于所制备的无粘结相纳米晶硬质合金的规模化生产;
[0033]
(8)本发明制得的添加金属氧化物的无粘结相纳米晶硬质合金,不仅近乎完全致密并仍然保持其独特的纳米晶特性,还同时具有高强度、高硬度和高断裂韧性,综合性能
佳。
具体实施方式
[0034]
实施例1
[0035]
称取38.35g偏钨酸铵、18.97g硝酸、5.40g硝酸铝、9.38g甘氨酸和18.32g葡萄糖置于500ml烧杯中,添加适量去离子水并不断揽拌使各种原料充分溶解形成均匀的混合溶液。将盛有上述溶液的烧杯放在电阻炉上持续加热,从开始加热自反应结束往烧杯中自上而下通入气流流速为0.3l/min的高纯氨气,发生溶液燃烧合成反应,得到蓬松的纳米wo
3
/al
2
o
3
/c复合前驱体粉末。将前驱体粉末取出并经过充分研磨后直接倒入圆柱形石墨模具中,两端加上石墨压头,在10mpa压力下保压3min,将预压过的压坯放入保温装置并置于放电等离子烧结炉中,将炉腔内抽成真空状态,压强至6pa,以90℃/min的升温速率升温至950℃保温15min,然后接着以80℃/min的升温速率升温至1450℃,保温4.5min,施加压力为60mpa。烧结完毕后,在带电、保压的条件下,以3℃/min的降温速率,降温至1200℃,保温2min;接着以5℃/min的降温速率,降温至1000℃,保温2min;然后断电快冷至50℃以下,即得到wc-al
2
o
3
无粘结相纳米晶硬质合金。经测试,合金的相对密度为99.0%,硬度为2675kg/mm
2
,断裂韧性为14.2mpa
·
m
1/2
,抗弯强度为15271507mpa,wc平均晶粒尺寸为155nm。
[0036]
实施例2
[0037]
称取38.23g偏钨酸铵、20.17g硝酸铵、6.50g硝酸镁、5.42g硝酸钇、11.25g尿素和27.92g葡萄糖置于500ml烧杯中,添加适量去离子水并不断揽拌使各种原料充分溶解形成均匀的混合溶液。将盛有上述溶液的烧杯放在电阻炉上持续加热,从开始加热自反应结束往烧杯中自上而下通入气流流速为0.5l/min的高纯氨气,发生溶液燃烧合成反应,得到蓬松的纳米wo
3
/mgo/y
2
o
3
/c复合前驱体粉末。将前驱体粉末取出并经过充分研磨后直接倒入圆柱形石墨模具中,两端加上石墨压头,在15mpa压力下保压2.5min,将预压过的压坯放入保温装置并置于放电等离子烧结炉中,将炉腔内抽成真空状态,压强至8pa,以90℃/min的升温速率升温至1000℃保温15min,然后接着以80℃/min的升温速率升温至1380℃,保温4min,施加压力为65mpa。烧结完毕后,在带电、保压的条件下,以3℃/min的降温速率,降温至1200℃,保温2min;接着以5℃/min的降温速率,降温至1000℃,保温1min;然后断电快冷至50℃以下,即得到wc-mgo/y
2
o
3
无粘结相纳米晶硬质合金。经测试,合金的相对密度为98.8%,硬度为2510kg/mm
2
,断裂韧性为14.7mpa
·
m
1/2
,抗弯强度为1335mpa,wc平均晶粒尺寸为200nm。
[0038]
实施例3
[0039]
称取76.45g偏钨酸铵、19.27g硝酸铵、11.93g硝酸锆、5.97g硝酸钇、21.33g尿素、9.61g柠檬酸和54.36g蔗糖置于1000ml烧杯中,添加适量去离子水并不断揽拌使各种原料充分溶解形成均匀的混合溶液。将盛有上述溶液的烧杯放在电阻炉上持续加热,从开始加热自反应结束往烧杯中自上而下通入气流流速为0.4l/min的高纯氨气,发生溶液燃烧合成反应,得到蓬松的纳米wo
3
/zro
2
/y
2
o
3
/c复合前驱体粉末。将前驱体粉末取出并经过充分研磨后直接倒入圆柱形石墨模具中,两端加上石墨压头,在20mpa压力下保压2min,将预压过的压坯放入保温装置并置于放电等离子烧结炉中,将炉腔内抽成真空状态,压强至4pa,以90℃/min的升温速率升温至1000℃保温12min,然后接着以80℃/min的升温速率升温至
1530℃,保温4min,施加压力为70mpa。烧结完毕后,在带电、保压的条件下,以3℃/min的降温速率,降温至1200℃,保温1min;接着以5℃/min的降温速率,降温至1000℃,保温1min;然后断电快冷至50℃以下,即得到wc-zro
2
/y
2
o
3
无粘结相纳米晶硬质合金。经测试,合金的相对密度为99.5%,硬度为2895kg/mm
2
,断裂韧性为12.6mpa
·
m
1/2
,抗弯强度为1495mpa,wc平均晶粒尺寸为100nm。
[0040]
实施例4
[0041]
称取80.13g偏钨酸铵、37.82g硝酸、11.01g硝酸铝、7.34g硝酸钇、6.12g硝酸镧、43.67g氨基乙酸和58.50g淀粉置于1000ml烧杯中,添加适量去离子水并不断揽拌使各种原料充分溶解形成均匀的混合溶液。将盛有上述溶液的烧杯放在电阻炉上持续加热,从开始加热自反应结束往烧杯中自上而下通入气流流速为0.6l/min的高纯氨气,发生溶液燃烧合成反应,得到蓬松的纳米wo
3
/al
2
o
3
/y
2
o
3
/la
2
o
3
/c复合前驱体粉末。将前驱体粉末取出并经过充分研磨后直接倒入圆柱形石墨模具中,两端加上石墨压头,在20mpa压力下保压1.5min,将预压过的压坯放入保温装置并置于放电等离子烧结炉中,将炉腔内抽成真空状态,压强至6pa,以90℃/min的升温速率升温至1050℃保温10min,然后接着以80℃/min的升温速率升温至1600℃,保温3min,施加压力为55mpa。烧结完毕后,在带电、保压的条件下,以3℃/min的降温速率,降温至1200℃,保温2min;接着以5℃/min的降温速率,降温至1000℃,保温1min;然后断电快冷至50℃以下,即得到wc-al
2
o
3
/y
2
o
3
/la
2
o
3
无粘结相纳米晶硬质合金。经测试,合金的相对密度为98.5%,硬度为2420kg/mm
2
,断裂韧性为15.8-mpa
·
m
1/2
,抗弯强度为1426mpa,wc平均晶粒尺寸为175nm。

起点商标作为专业知识产权交易平台,可以帮助大家解决很多问题,如果大家想要了解更多知产交易信息请点击 【在线咨询】或添加微信 【19522093243】与客服一对一沟通,为大家解决相关问题。

此文章来源于网络,如有侵权,请联系删除

tips