基于铝-铜-铁系的准晶体的复合材料及其生产方法与流程
本发明涉及基于准晶体的三维全致密复合材料的生产。本发明涉及生产固体三维材料的粉末技术,所述固体三维材料具有低摩擦系数、增强的抗机械磨损性、增强的耐腐蚀性和降低的辐射损伤敏感性。这种材料可广泛用于机械工程、在高真空下运行的空间设备的开发、化学和电子工业、原子能工程,以提高机器和机械部件的使用寿命和运行可靠性,并且还可利用传统的相对便宜的材料赋予物品新的功能。
背景技术:
准晶体的显著特征是不同寻常的综合性能:低摩擦系数、高耐磨性、高耐腐蚀性以及低粘性[1-3]。铝-铜-铁准晶体的物理机械性质以及以粉末形式生产它们的现有有效方法[4]使得有必要开发一种从这些粉末来获得三维物体的方法。然而,使用粉末技术由准晶体形成制品会遇到相当大的困难:准晶体的低粘性特别是会导致摩擦副的磨损增加以及成品出现碎裂和裂纹。对此,正在开发各种方法来形成适合于准晶体复合物的独特性质的复合材料。在文献[4]中,获得了代表铝和包含铝-铜-铁准晶体颗粒的聚合物基质的三维样品。该方法的缺点是所得材料的密度低[5]。现有的制造复合材料的方法是基于将基材和粘合剂组分进行混合的过程[6]。在这种情况下,两种成分都处于分散状态。然而,由于混合过程的随机性质引起的物理约束,无法实现少量粘合剂的理想的均匀掺入。另一方面,已知有生产分散复合材料(dcm,dispersecompositematerials)粉末的方法,该粉末由涂覆有壳的小颗粒组成,这使得有可能将一定量的粘合剂组分施加到基材颗粒上,从而确保粘合剂组分的均匀引入。
已经开发了一种在尘埃等离子体中生产分散复合材料的方法。这种方法基于利用等离子尘埃捕集器的特性,使能够长时间保持等离子悬浮结构不受尘埃颗粒的影响。借助于由磁控管喷射系统产生的原子流将金属涂层涂覆到这些颗粒上[7-11]。该方法可以生产不同材料的小颗粒(平均尺寸在1-10微米范围内),涂层厚度为10-20纳米。所开发的在等离子体中对小颗粒表面涂覆涂层的方法具有许多优点,例如不存在粉末颗粒和涂层的化学组成的主要限制、能够获得化学纯纳米涂层、高粘附强度、沉积层厚度的连续性和可控性。根据放电条件,可以获得不同形态的涂层。
当将粘合剂组分以这种涂层的形式添加至粉末中时,组分分布的均匀性水平仅受平均颗粒尺寸的限制。由此,改善了基于这种复合粉末获得的致密材料的特性。创造具有准晶体复合物的抗烧结和抗摩擦性能的新型大块材料成为可能。
已知一种方法[12]用于改善准晶体材料的机械性能,同时保持低摩擦系数值。已经试图通过提供基于这样的准晶体粉末的复合材料来寻找该问题的解决方案:该准晶体粉末的颗粒在等离子体粉尘捕集器中涂覆有镍纳米涂层。在氢中退火后从这种粉末压制的样品在某些情况下显示出相当低的摩擦系数(约0.15),并且在摩擦测试过程中几乎没有磨损[12]。烧结样品中强化镍网格的存在将导致韧性的显著增加。然而,不可能获得稳定、再现性好的结果,因为在相对低的压力(大约1-1.5gpa)下压制。在这种条件下,在一些样例中观察到样本的解理面出现了多孔结构。此外,压制样品在1000k温度下于氢中的烧结导致准晶体的晶核与镍涂层的相互作用从而形成β相。
该方法在技术上最接近本发明。这种技术的一个显著局限性是与缺陷形成、材料结构中孔隙的存在以及β相含量的显著增加相关的结果的再现性差。
已知一种由铝-铜-铁准晶体粉末生产三维致密材料的方法,该方法不使用粘合剂和活化剂,其通过在8-9gpa的压力下冷压,然后在大气压下退火[13]。该方法可以获得平均摩擦系数为0.15、密度接近理论值的样品。然而,应该注意的是,纯准晶体材料非常脆,并且它们的韧性处于相对较低的水平,这限制了它们的实际应用。因此,在高压下压制不能提供材料的摩擦和强度性能的最佳组合。此外,铝-铜-铁准晶体在高压下烧结的缺点导致缺乏可实用的结果,该缺点与结构中特定缺陷的出现有关[13-15]。
因此,这种方法的局限性是在压制样品中存在缺陷,并且获得的产品冲击强度低,这是纯准晶体的特性。
技术实现要素:
本发明的一个目的是提供完全致密的三维固体材料,其具有低摩擦系数和增加的强度和抗机械磨损性。本发明的技术成果在于:(a)改善了所获得的三维材料的特性,以及(b)由于其性能的改善,为新的技术应用创造了额外的可能性。
通过提供一种基于铝-铜-铁系的准晶体粉末的复合材料来实现该技术效果,该复合材料具有包含增强镍晶格的镍粘合剂,并且通过在铝-铜-铁系的准晶体粉末的颗粒上沉积镍涂层来实现该技术效果(为此目的,准晶体粉末主要在等离子体中处理,结果是在粉末颗粒的表面上形成薄的(10-20纳米)镍涂层)。然后,将作为分散复合材料的处理过的粉末在室温下在准流体静力条件下以超过1.5gpa的压力进行压制。
在高压下压缩之前,可以在低于773k(或更优选低于770k)的温度下在氢中加热粉末,以减少镍涂层表面上的氧化膜。
可以预先在不超过0.7gpa的压力下压实粉末。
此外,将镀镍粉末在大于1.5gpa的压力下进行压制,并且优选在小于100mpa的压力下在还原性气氛或惰性气氛中对经压制的粉末进行退火。在特定压力下——特别是在8-9gpa的压力下——压制而获得的高密度样品能够消除孔和碎片的形成,并且镍粘合剂提高了制品的抗机械磨损性。然后,将通过在8-9gpa的压力下冷压获得的样品在还原性气氛或惰性气氛中或真空中在常压下进行退火,以在烧结样品中形成增强的镍网络。常压下的退火温度不应超过850k。
致密样品的高耐磨性和高强度性能是通过施加高压以产生全密度压块并在烧结样品中形成均匀的增强镍网络来实现的,该网络非常薄,使得复合材料中的镍含量不超过3wt.%。
具体实施方式
在施加8-9gpa高压的情况下,由基于铝-铜-铁准晶体的分散复合材料粉末生产具有降低的摩擦系数和增加的机械磨损抗性的三维全致密复合材料,该复合材料的颗粒涂覆有镍纳米涂层。
为了在准晶体粉末颗粒上产生镍涂层,使用磁控溅射系统在尘埃等离子体中处理粉末。使用粒度在0.5-20微米范围内的铝-铜-铁准晶体粉末。为了从吸附的气体杂质中纯化粉末,在15分钟的实验准备阶段中,将含有粉末的反应器加热至200℃,同时抽真空。在hp质量的氩气中,在0.4pa的压力下,以20sccm的速度,将镍涂层喷涂到颗粒上。沉积时间为40分钟。在该过程结束时,在大气条件下从反应器中取出由涂层颗粒组成的粉末。
将经等离子体处理过的粉末在石墨容器中于室温下在压力为8gpa的高压室中进行压缩。然后,将获得的样品在大气压下在氢中退火。使用石英炉进行退火。退火温度为823k,退火时间为40分钟。退火后,样品与炉一起在氢中冷却至室温。获得高度为3毫米、直径约为4毫米的圆柱形复合材料样品(图1)。
样品的微观结构用扫描电子显微镜进行检测。在图2中示出了样品抛光表面的扫描电子显微镜图像。
在图3中,在映射模式中获得的相同表面区域中的镍分布以浅色被突出显示。来自镍的特征辐射的信号在晶粒的抛光部分中实际上是不存在的,而是在晶粒之间的全部中间层中检测到了。因此,可以看出镍均匀分布在颗粒表面。
样品的密度用比重法测定。所测得的样品密度在4.63-4.68g/cm3的范围内,这对应于从文献中已知的准晶体密度的最大值。
在10mhz频率下,用脉冲超声波方法对弹性特性进行了研究。通过在纳米硬度计上测量压痕的方法来研究样品的机械性能,在九次测量中,载荷增加到30mn。样品的硬度范围为7-10gpa,这是块状准晶体的特征,杨氏模量范围为130-150gpa。
根据上述数据,所获得的样品在钢上的摩擦系数在0.05-0.15的范围内,并且耐磨性增加。
因此,通过所开发的方法,获得了具有高硬度、高弹性模量、降低的摩擦系数和增加的抗机械磨损性的全密度复合准晶体材料。
参考文献
[1]zbigniewm.stadnik(编著).准晶体的物理性质.斯普林格系列《固态科学》.
[2]j.-mdubois,s.s.kang,y.massiani.准晶态合金在软金属表面涂层中的应用.非结晶固体,153&154,443-4445,1993。
[3]j.-mdubois,s.s.kanganda.perrot.材料科学与工程,a179/a180,122-126,1994。
[4]kaloshkin,s.d.,tcherdynsev,v.v.,danilov,v.d.机械活化制备铝-铜-铁准晶粉末合金及相关材料.结晶学.2007,卷52,第6册,953页.
[5]petrozhik,m.i.,levashov,e.a.通过机械接触测试研究先进材料功能表面的现代方法。结晶学,2007,卷52,第6期,966页.
[6].专利:制备准晶颗粒增强镁基复合材料的工艺,cn1306051c.
[7]v.e.fortov,h.hora,a.s.ivanov等人.用于生产分散的复合材料的方法和装置.公开de19832908a1,1998.
[8].h.kersten,p.schmetz,g.m.w.kroesen.等离子体沉积法制备粉末颗粒的表面改型.表面涂覆技术,108-109,507,1998.
[9]a.s.ivanov,v.s.mitin,a.f.pal,a.n.ryabinkin,a.o.serov,a.n.starostin.纳米涂层分散复合材料.纳米技术,2008年,第14期,第21-25页.
[10]a.s.ivanov,v.s.mitin,a.f.pal,a.n.ryabinkin,a.o.serov,e.a.skryleva,a.n.starostin,v.e.fortov,yu.m.shchulga.尘埃等离子体中分散复合材料的制备.dokladyakademiinauk,395,3,2004,335-338.
[11]a.s.ivanov,a.f.pal,a.n.ryabinkin,a.o.serov,e.a.ekimov,a.v.smirnov,a.n.starostin.尘埃等离子体在制备分散复合材料中的应用。ros.khim.,j.(j.ros.khim.ob-va.im.d.i.mendeleeva),2013,lvii卷,第3期,第70-82页.
[12]ivanov,a.s.,kruglov,v.s.,pal,a.f.,等.基于镍涂层铝铜铁准晶体粉末的大复合材料的合成和表征.lett物理技术,2011年,第37卷,第10期,第917页.
[13]e.a.ekimov,v.p.sirotinkin,m.i.petrzhik,e.l.gromnitskaya.高压压实的铝-铜-铁准晶体的烧结、结构和物理性质.无机材料,第50卷,第1期,第52-57页.
[14]x.jiang,z.chen,y.wang,d.zhou.高压高温下快速固化的al65cu20fe15晶体向准晶相转变.scriptametall.mater,第27卷,第1401-1403页(1992).
[15]yu.v.mil'man,n.a.efremov,s.v.ul'shin,a.i.bykov,o.d.neikov,a.v.samelyuk.高压烧结铝-铜-铁合金的力学性能.粉末冶金与金属陶瓷,第49卷,第280-288页(2010).
起点商标作为专业知识产权交易平台,可以帮助大家解决很多问题,如果大家想要了解更多知产交易信息请点击 【在线咨询】或添加微信 【19522093243】与客服一对一沟通,为大家解决相关问题。
此文章来源于网络,如有侵权,请联系删除