一种制备铜铟镓硒(CIGS)或铜铟铝硒(CIAS)四元靶材的方法与流程
2021-01-30 07:01:53|325|起点商标网
一种制备铜铟镓硒(cigs)或铜铟铝硒(cias)四元靶材的方法
技术领域
[0001]
本发明属于光电功能材料领域,具体涉及一种制备铜铟镓硒(cigs)或铜铟铝硒(cias)四元靶材的方法。
背景技术:
[0002]
当今化石燃料的日益枯竭加上越来越严重的环境污染问题,使得研究绿色可再生能源成为大势所趋。太阳能无污染、可再生、分布广,是新能源领域研究的重点方向。铜铟硒(cis)系薄膜太阳能电池具有高光电转换效率、低成本、无衰减等特点,且可以应用在柔性基底上,是十分具有发展前景的太阳能电池材料之一。太阳能电池光吸收层材料理论上的最优禁带宽度为1.45ev。铜铟硒(cis)材料的禁带宽度为1.04ev,通过掺入同族的ga或al置换in原子形成铜铟镓硒(cigs)或铜铟铝硒(cias)材料,可提高并调节吸收层的禁带宽度,从而提高薄膜太阳能电池的开路电压和光电转换效率。
[0003]
目前制备cis或cigs薄膜的方法主要有电沉积、喷涂、印刷等非真空法,以及共蒸发、磁控溅射等真空法。非真空法工艺稳定性不好,难以制备大面积均匀膜层。蒸发法由于各个金属蒸发源蒸气压相差大,因此该技术对设备要求高,蒸发量的精确控制和实现大面积均匀沉积是一个难题。传统的磁控溅射法实际上是溅射后硒化两步法,该方法硒化过程比较难以控制,容易产生挥发相。如果直接采用铜铟镓硒(cigs)四元靶材溅射成膜,由于在溅射过程中即在薄膜中加入了足量的硒,则可以降低硒化过程的控制难度,易于实现成分均匀的大面积成膜,并且还能减少固态se蒸气或者h2se气体的用量,从而降低生产成本,提高生产效率,改善成膜质量。铜铟镓硒(cigs)和铜铟铝硒(cias)四元靶材的合成方法主要有金属硒化物球磨烧结方法和单质合成方法两种。前者采用硒化物作为原料,合成后材料均匀性较好,工艺耗时较短,但高纯硒化物原料成本较高,并且al2se3遇水分解为氧化铝和h2se气体,稳定性不好,从而对工艺稳定性和良品率造成很大影响。后者采用单质作为原料,将单质原料分别放置于不同坩埚内,然后置于石英管中抽真空,对不同原料的坩埚分别进行加热并蒸发,使得硒蒸气与金属蒸气发生反应,最终形成cigs或cias四元化合物,该方法耗时长,工艺控制难度很大,并且容易出现石英管爆裂现象,降低良品率。
技术实现要素:
[0004]
针对上述问题,本发明提供了一种制备铜铟镓硒(cigs)或铜铟铝硒(cias)四元靶材的方法,以cu颗粒、in2se3粉体、ga或al颗粒、se颗粒为原料,在密封石英管中合成cigs或cias块体,然后将cigs或cias块体破碎后热压烧结,获得高品质cigs或cias四元靶材。所述方法避免了在合成过程中杂质的引入和元素的挥发损失,工艺容易控制,有利于降低生产成本和安全生产。为了达到以上目的,本发明采用的技术方案是:
[0005]
一种制备铜铟镓硒(cigs)或铜铟铝硒(cias)四元靶材的方法,其特征在于,所述方法包含以下步骤:
[0006]
(1)按照化合物cuin1-xgaxse2或cuin1-xalxse2(0<x<1)的化学计量比将cu颗粒、
in2se3粉体、ga或al颗粒、se颗粒称量并混合后放置于石英管中;
[0007]
(2)将石英管抽真空密封后置于热处理炉中,依次在低温、中温、高温段分别保温一段时间,随炉冷却至室温,得到cigs或cias块体;
[0008]
(3)将cigs或cias块体破碎成平均粒径为10~200微米的粉体;
[0009]
(4)将cigs或cias粉体装入石墨模具中进行热压烧结,即获得成分均匀、相对密度>90%的cigs或cias四元靶材。
[0010]
上述的一种制备铜铟镓硒(cigs)或铜铟铝硒(cias)四元靶材的方法,其特征在于,在步骤(1)中,所述cu颗粒、in2se3粉体、ga或al颗粒、se颗粒的纯度≥99.99%。
[0011]
上述的一种制备铜铟镓硒(cigs)或铜铟铝硒(cias)四元靶材的方法,其特征在于,在步骤(1)中,在合成cigs块体时,所述原料混合后直接置于石英管内;在合成cias块体时,所述原料混合后需先放置于刚玉坩埚中,然后再置于石英管内,以避免al及其硒化物在高温下与石英发生反应。
[0012]
上述的一种制备铜铟镓硒(cigs)或铜铟铝硒(cias)四元靶材的方法,其特征在于,在步骤(2)中,所述石英管抽真空至5
×
10-2pa以下。
[0013]
上述的一种制备铜铟镓硒(cigs)或铜铟铝硒(cias)四元靶材的方法,其特征在于,在步骤(2)中,所述低温、中温、高温段分别为300~600℃、600~800℃、800~1200℃,升温速率为1~20℃/min,在每个温度段的保温时间为0.5~8h。上述的一种制备铜铟镓硒(cigs)或铜铟铝硒(cias)四元靶材的方法,其特征在于,在步骤(4)中,所述热压烧结温度为550~850℃,升温速率为1~20℃/min,升温至烧结温度时施加压力15~50mpa,保温同时保压0.5~10h,保温保压结束后卸压并随炉冷却至室温取出工件。
[0014]
本发明的有益效果在于:将原料置于封闭石英管中,避免了在合成过程中杂质的引入和元素的挥发损失,从而实现了对合成物化学计量比的精确控制;由于采用in2se3化合物粉体作为原料,从而避免了合成过程中in和se的剧烈反应,甚至是爆炸的产生,使得合成反应易于控制,提高了良品率,通过放大石英管体积,可以容易地实现产量的提高;由于反应过程容易控制,因此生产设备更为简单,有利于降低生产成本和安全生产。
具体实施方式
[0015]
下面结合实施例对本发明作进一步说明,但本发明绝非限于实施例。
[0016]
实施例1:
[0017]
按照化合物cuin0.75ga0.25se2(x=0.25)的化学计量比,将纯度≥99.99%的cu颗粒、in2se3粉体、ga颗粒、se颗粒称量并混合后放置于石英管内;将石英管抽真空至5
×
10-2pa以下,然后密封;将密封好的石英管置于热处理炉中,以10℃/min升温至500℃后保温2h,随后以10℃/min升温至750℃保温2h,接着以10℃/min升温至1000℃保温1h,随炉冷却至室温,得到cigs块体;将cigs块体破碎成平均粒径为50微米的粉体;将cigs粉体装入石墨模具中进行热压烧结,热压烧结温度为650℃,升温速率为10℃/min,升温至烧结温度时施加压力为30mpa,保温同时保压4h,保温保压结束后卸压并随炉冷却至室温取出工件,获得成分均匀、相对密度为97%的cigs靶材。
[0018]
实施例2:
[0019]
按照化合物cuin0.75al0.25se2(x=0.25)的化学计量比,将纯度≥99.99%的cu
颗粒、in2se3粉体、al颗粒、se颗粒称量并混合后放置于刚玉坩埚中,随后将刚玉坩埚置于石英管内;将石英管抽真空至5
×
10-2pa以下,然后密封;将密封好的石英管置于热处理炉中,以5℃/min升温至500℃保温3h,随后以5℃/min升温至700℃保温3h,接着以5℃/min升温至1100℃保温2h,随炉冷却至室温,得到cias块体;将cias块体破碎成平均粒径为80微米的粉体;将cias粉体装入石墨模具中进行热压烧结,热压烧结温度为700℃,升温速率为5℃/min,升温至烧结温度时施加压力为25mpa,保温同时保压2h,保温保压结束后卸压并随炉冷却至室温取出工件,获得成分均匀、相对密度为95%的cias靶材。
[0020]
实施例3:
[0021]
按照化合物cuin0.5ga0.5se2(x=0.5)的化学计量比,将纯度≥99.99%的cu颗粒、in2se3粉体、ga颗粒、se颗粒称量并混合放置于石英管内;将石英管抽真空至5
×
10-2pa以下,然后密封;将密封好的石英管置于热处理炉中,以15℃/min升温至400℃后保温4h,随后以15℃/min升温至700℃保温5h,接着以15℃/min升温至1050℃保温3h,随炉冷却至室温,得到cigs块体;将cigs块体破碎成平均粒径为100微米的粉体;将cigs粉体装入石墨模具中进行热压烧结,热压烧结温度为750℃,升温速率为8℃/min,升温至烧结温度时施加压力为35mpa,保温同时保压1h,保温保压结束后卸压并随炉冷却至室温取出工件,获得成分均匀、相对密度为98%的cigs靶材。
[0022]
以上给出的实施例用以说明本发明和它的实际应用,并非对本发明作任何形式上的限制,任何一个本专业的技术人员在不偏离本发明技术方案的范围内,依据以上技术和方法作一定的修饰和变更当视为等同变化的等效实施例。
技术领域
[0001]
本发明属于光电功能材料领域,具体涉及一种制备铜铟镓硒(cigs)或铜铟铝硒(cias)四元靶材的方法。
背景技术:
[0002]
当今化石燃料的日益枯竭加上越来越严重的环境污染问题,使得研究绿色可再生能源成为大势所趋。太阳能无污染、可再生、分布广,是新能源领域研究的重点方向。铜铟硒(cis)系薄膜太阳能电池具有高光电转换效率、低成本、无衰减等特点,且可以应用在柔性基底上,是十分具有发展前景的太阳能电池材料之一。太阳能电池光吸收层材料理论上的最优禁带宽度为1.45ev。铜铟硒(cis)材料的禁带宽度为1.04ev,通过掺入同族的ga或al置换in原子形成铜铟镓硒(cigs)或铜铟铝硒(cias)材料,可提高并调节吸收层的禁带宽度,从而提高薄膜太阳能电池的开路电压和光电转换效率。
[0003]
目前制备cis或cigs薄膜的方法主要有电沉积、喷涂、印刷等非真空法,以及共蒸发、磁控溅射等真空法。非真空法工艺稳定性不好,难以制备大面积均匀膜层。蒸发法由于各个金属蒸发源蒸气压相差大,因此该技术对设备要求高,蒸发量的精确控制和实现大面积均匀沉积是一个难题。传统的磁控溅射法实际上是溅射后硒化两步法,该方法硒化过程比较难以控制,容易产生挥发相。如果直接采用铜铟镓硒(cigs)四元靶材溅射成膜,由于在溅射过程中即在薄膜中加入了足量的硒,则可以降低硒化过程的控制难度,易于实现成分均匀的大面积成膜,并且还能减少固态se蒸气或者h2se气体的用量,从而降低生产成本,提高生产效率,改善成膜质量。铜铟镓硒(cigs)和铜铟铝硒(cias)四元靶材的合成方法主要有金属硒化物球磨烧结方法和单质合成方法两种。前者采用硒化物作为原料,合成后材料均匀性较好,工艺耗时较短,但高纯硒化物原料成本较高,并且al2se3遇水分解为氧化铝和h2se气体,稳定性不好,从而对工艺稳定性和良品率造成很大影响。后者采用单质作为原料,将单质原料分别放置于不同坩埚内,然后置于石英管中抽真空,对不同原料的坩埚分别进行加热并蒸发,使得硒蒸气与金属蒸气发生反应,最终形成cigs或cias四元化合物,该方法耗时长,工艺控制难度很大,并且容易出现石英管爆裂现象,降低良品率。
技术实现要素:
[0004]
针对上述问题,本发明提供了一种制备铜铟镓硒(cigs)或铜铟铝硒(cias)四元靶材的方法,以cu颗粒、in2se3粉体、ga或al颗粒、se颗粒为原料,在密封石英管中合成cigs或cias块体,然后将cigs或cias块体破碎后热压烧结,获得高品质cigs或cias四元靶材。所述方法避免了在合成过程中杂质的引入和元素的挥发损失,工艺容易控制,有利于降低生产成本和安全生产。为了达到以上目的,本发明采用的技术方案是:
[0005]
一种制备铜铟镓硒(cigs)或铜铟铝硒(cias)四元靶材的方法,其特征在于,所述方法包含以下步骤:
[0006]
(1)按照化合物cuin1-xgaxse2或cuin1-xalxse2(0<x<1)的化学计量比将cu颗粒、
in2se3粉体、ga或al颗粒、se颗粒称量并混合后放置于石英管中;
[0007]
(2)将石英管抽真空密封后置于热处理炉中,依次在低温、中温、高温段分别保温一段时间,随炉冷却至室温,得到cigs或cias块体;
[0008]
(3)将cigs或cias块体破碎成平均粒径为10~200微米的粉体;
[0009]
(4)将cigs或cias粉体装入石墨模具中进行热压烧结,即获得成分均匀、相对密度>90%的cigs或cias四元靶材。
[0010]
上述的一种制备铜铟镓硒(cigs)或铜铟铝硒(cias)四元靶材的方法,其特征在于,在步骤(1)中,所述cu颗粒、in2se3粉体、ga或al颗粒、se颗粒的纯度≥99.99%。
[0011]
上述的一种制备铜铟镓硒(cigs)或铜铟铝硒(cias)四元靶材的方法,其特征在于,在步骤(1)中,在合成cigs块体时,所述原料混合后直接置于石英管内;在合成cias块体时,所述原料混合后需先放置于刚玉坩埚中,然后再置于石英管内,以避免al及其硒化物在高温下与石英发生反应。
[0012]
上述的一种制备铜铟镓硒(cigs)或铜铟铝硒(cias)四元靶材的方法,其特征在于,在步骤(2)中,所述石英管抽真空至5
×
10-2pa以下。
[0013]
上述的一种制备铜铟镓硒(cigs)或铜铟铝硒(cias)四元靶材的方法,其特征在于,在步骤(2)中,所述低温、中温、高温段分别为300~600℃、600~800℃、800~1200℃,升温速率为1~20℃/min,在每个温度段的保温时间为0.5~8h。上述的一种制备铜铟镓硒(cigs)或铜铟铝硒(cias)四元靶材的方法,其特征在于,在步骤(4)中,所述热压烧结温度为550~850℃,升温速率为1~20℃/min,升温至烧结温度时施加压力15~50mpa,保温同时保压0.5~10h,保温保压结束后卸压并随炉冷却至室温取出工件。
[0014]
本发明的有益效果在于:将原料置于封闭石英管中,避免了在合成过程中杂质的引入和元素的挥发损失,从而实现了对合成物化学计量比的精确控制;由于采用in2se3化合物粉体作为原料,从而避免了合成过程中in和se的剧烈反应,甚至是爆炸的产生,使得合成反应易于控制,提高了良品率,通过放大石英管体积,可以容易地实现产量的提高;由于反应过程容易控制,因此生产设备更为简单,有利于降低生产成本和安全生产。
具体实施方式
[0015]
下面结合实施例对本发明作进一步说明,但本发明绝非限于实施例。
[0016]
实施例1:
[0017]
按照化合物cuin0.75ga0.25se2(x=0.25)的化学计量比,将纯度≥99.99%的cu颗粒、in2se3粉体、ga颗粒、se颗粒称量并混合后放置于石英管内;将石英管抽真空至5
×
10-2pa以下,然后密封;将密封好的石英管置于热处理炉中,以10℃/min升温至500℃后保温2h,随后以10℃/min升温至750℃保温2h,接着以10℃/min升温至1000℃保温1h,随炉冷却至室温,得到cigs块体;将cigs块体破碎成平均粒径为50微米的粉体;将cigs粉体装入石墨模具中进行热压烧结,热压烧结温度为650℃,升温速率为10℃/min,升温至烧结温度时施加压力为30mpa,保温同时保压4h,保温保压结束后卸压并随炉冷却至室温取出工件,获得成分均匀、相对密度为97%的cigs靶材。
[0018]
实施例2:
[0019]
按照化合物cuin0.75al0.25se2(x=0.25)的化学计量比,将纯度≥99.99%的cu
颗粒、in2se3粉体、al颗粒、se颗粒称量并混合后放置于刚玉坩埚中,随后将刚玉坩埚置于石英管内;将石英管抽真空至5
×
10-2pa以下,然后密封;将密封好的石英管置于热处理炉中,以5℃/min升温至500℃保温3h,随后以5℃/min升温至700℃保温3h,接着以5℃/min升温至1100℃保温2h,随炉冷却至室温,得到cias块体;将cias块体破碎成平均粒径为80微米的粉体;将cias粉体装入石墨模具中进行热压烧结,热压烧结温度为700℃,升温速率为5℃/min,升温至烧结温度时施加压力为25mpa,保温同时保压2h,保温保压结束后卸压并随炉冷却至室温取出工件,获得成分均匀、相对密度为95%的cias靶材。
[0020]
实施例3:
[0021]
按照化合物cuin0.5ga0.5se2(x=0.5)的化学计量比,将纯度≥99.99%的cu颗粒、in2se3粉体、ga颗粒、se颗粒称量并混合放置于石英管内;将石英管抽真空至5
×
10-2pa以下,然后密封;将密封好的石英管置于热处理炉中,以15℃/min升温至400℃后保温4h,随后以15℃/min升温至700℃保温5h,接着以15℃/min升温至1050℃保温3h,随炉冷却至室温,得到cigs块体;将cigs块体破碎成平均粒径为100微米的粉体;将cigs粉体装入石墨模具中进行热压烧结,热压烧结温度为750℃,升温速率为8℃/min,升温至烧结温度时施加压力为35mpa,保温同时保压1h,保温保压结束后卸压并随炉冷却至室温取出工件,获得成分均匀、相对密度为98%的cigs靶材。
[0022]
以上给出的实施例用以说明本发明和它的实际应用,并非对本发明作任何形式上的限制,任何一个本专业的技术人员在不偏离本发明技术方案的范围内,依据以上技术和方法作一定的修饰和变更当视为等同变化的等效实施例。
起点商标作为专业知识产权交易平台,可以帮助大家解决很多问题,如果大家想要了解更多知产交易信息请点击 【在线咨询】或添加微信 【19522093243】与客服一对一沟通,为大家解决相关问题。
此文章来源于网络,如有侵权,请联系删除
热门咨询
tips