空间激光薄膜制备方法与流程
2021-01-30 02:01:26|312|起点商标网
[0001]
本发明属于光学薄膜技术领域,具体涉及空间激光薄膜制备方法。
背景技术:
[0002]
随着人类对空间环境探测的不断深入,以及激光器不断发展,空间激光系统已成为航天任务中的重要工具。而光学薄膜作为光学系统中最为薄弱的元件之一,并且在轨运行中光学薄膜一旦发生损伤将无法修复或更换,因此它的稳定性和使用寿命对于整个系统来说至关重要。空间中有着不同于地面的真空、高低温交变、高能粒子辐照等特殊环境因素,对于空间应用的激光薄膜,不仅要能抵抗激光损伤,还要能在空间环境中有很好的稳定性,这对光学薄膜提出了更高的要求。
[0003]
而传统电子束蒸发制备的激光薄膜结构疏松多孔,从地面到空间的过程中会发生较为严重的大气-真空效应和辐照损伤,造成薄膜材料的微观结构、应力及材料热力学参数发生变化,进而影响到宏观的光谱性能和抗激光损伤性能,因此不适用于空间环境。
[0004]
此外,基底的表面缺陷和亚表面缺陷也极大地限制了薄膜的激光损伤阈值,通常使用的超声清洗无法有效去除基底杂质,需要hf等化学刻蚀方法或离子束刻蚀方法才能有效去除污染物和亚表面缺陷。
[0005]
针对传统加工和制备工艺存在的缺点,本发明提出一种从基底清洗到镀膜工艺的全流程制备技术,进一步提升薄膜的激光损伤阈值和空间稳定性。
技术实现要素:
[0006]
本发明的目的在于提供空间激光薄膜制备方法,提出了一种包括去除基底表面污染物和亚表面缺陷、增加抗辐照保护层,基底上镀膜的全流程技术方案,有效解决了激光薄膜在空间环境中稳定性差的问题。
[0007]
本发明的技术解决方案如下:
[0008]
(1)去除基底表面污染物和亚表面缺陷;
[0009]
(2)选择sio2、al2o3和mgf2中的一种作为抗辐照保护层,并在基底上镀膜。
[0010]
本发明中,所述步骤(1)的具体步骤为:
[0011]
(1.1)将基底经过超声清洗10~30min,再用去离子水冲洗,最后用高纯氮气吹干;
[0012]
(1.2)对基底进行氢氟酸刻蚀或离子束刻蚀,刻蚀深度为180-220nm。
[0013]
本发明中,所述的基底材料为抗空间辐照基底材料,如石英玻璃。
[0014]
本发明中,所述的激光薄膜是由sio2、al2o3、mgf2、tio2、ta2o5、zro2、hfo2、nb2o5中的一种或多种组成的单层膜或多层膜。
[0015]
本发明中,所述步骤(2)中的抗辐照保护层位于入射介质层上面,sio2、mgf2适用于紫外波段,al2o3适用于可见和红外波段。
[0016]
本发明中,所述步骤(2)在基底上镀膜的具体步骤为:
[0017]
(2.1)擦洗镀膜机内真空腔室,进行真空抽气;
[0018]
(2.2)将基底和靶材放入镀膜机中,关闭真空舱舱门,再次进行真空抽气,控制镀膜机内真空室的本底真空度为10-5-10-7
pa;
[0019]
(2.3)加热基底使其温度保持在80℃~120℃;
[0020]
(2.4)使用离子源辅助的物理气相沉积方法镀膜,氩气作为离子源气体,并充入氧气,充氧量为5-45sccm使靶材原子充分氧化,控制膜料分子在基底上的沉积速率为0.15-0.40nm/s。
[0021]
本发明中,所述步骤(2.4)中离子源辅助的物理气相沉积方法为双离子束溅射、离子束辅助沉积、磁控溅射中的一种。
[0022]
本发明中,所述的双离子束溅射具体为:采用氩气作为主离子源气体,主离子源电压为1150-1350v,以氩气和氧气作为辅助离子源气体,辅助离子源电压为500-700v,氩气和氧气流量比为1:4-1:6。
[0023]
本发明的技术效果如下:
[0024]
(1)提出一种包括去除基底表面污染物和亚表面缺陷、增加抗辐照保护层,基底上镀膜的全流程技术方案,针对薄膜设计、加工和制备的各个环节都提出了优化解决方法,所制备薄膜的激光辐照稳定性和空间环境稳定性都有明显提升;
[0025]
(2)添加了抗辐照保护层,所制备的空间激光薄膜不易受到空间粒子辐照损伤,具有较高的空间稳定性,经gamma射线辐照后整体光学性能无明显变化,透过率变化小于3%;
[0026]
(3)使用酸刻蚀或离子束刻蚀,极大地减少了基底的表面及亚表面缺陷,有效去除了低阈值缺陷和杂质缺陷,缺陷密度较超声清洗降低了约10倍,薄膜阈值较超声清洗提升了约10倍;
[0027]
(4)制备出的空间激光薄膜,其折射率可达到体材料水平,在大气-真空环境下的光谱偏移量小,在真空度低于10-3
mbar的环境中光谱偏移量小于0.5%,能够抵御真空和高低温交变环境。
附图说明
[0028]
图1是本发明优选实施例1中薄膜在大气和真空下的透过率光谱。
[0029]
图2是本发明优选实施例1中不同基底清洗方式下薄膜的激光损伤概率曲线。
[0030]
图3是本发明优选实施例2中薄膜在gamma射线辐照前后的光谱曲线。
[0031]
图4是本发明优选实施例2中薄膜在gamma射线辐照前后1-on-1激光损伤概率曲线。
具体实施方式
[0032]
下面通过具体实施例对本发明进行详细说明。
[0033]
实施例1:以石英玻璃为基底、al2o3为膜层材料、sio2为保护层材料制备1064nm增透膜。
[0034]
将基底经过超声清洗10~30min,再用去离子水冲洗,最后用高纯氮气吹干;擦洗镀膜机内真空腔室,进行真空抽气;将基底放入镀膜机中,关闭真空舱舱门,再次进行真空抽气,控制镀膜机内真空室的本底真空度为2
×
10-6
pa,加热基底使其温度保持在80℃;镀膜前先对基底进行离子束刻蚀,利用ar离子源轰击基底,使用的ar离子源电压为650v,刻蚀深
度200nm;使用双离子束溅射设备在上述处理过的基底上镀膜,主离子源电压为1250v,使用氩气作为主离子源气体,辅助离子源电压为650v,氩气和氧气流量比为1:5,充氧量为15sccm,控制膜料分子在基底上的沉积速率约为0.2nm/s。
[0035]
对制备好的空间激光薄膜进行大气及真空下的光谱测试,测试真空度约10-3
mbar,图1为薄膜在大气和真空下的透过率光谱。研究发现该增透膜光谱波长仅发生了略微蓝移,与传统方法的1064nm增透膜相比,偏移量从2.5%降低到了0.15%,在1064nm处的透过率几乎不发生下降。
[0036]
将制备好的空间激光薄膜按照iso 21254标准进行1-on-1激光损伤测试,图2展示了通过不同基底清洗方式下薄膜的激光损伤概率曲线。结果表明,离子束刻蚀后,基底中的na、ce、k、fe等杂质元素明显减少,表面粗糙度也有明显提升,缺陷密度由超声清洗的2.20mm-2
降低到了0.22mm-2
,薄膜阈值相较超声方法分别提升了约10倍。
[0037]
实施例2:以石英玻璃为基底、ta2o5为膜层材料、sio2为保护层材料制备高反膜。
[0038]
将基底经过超声清洗10~30min,再用去离子水冲洗,最后用高纯氮气吹干;擦洗镀膜机内真空腔室,进行真空抽气;将基底放入镀膜机中,关闭真空舱舱门,再次进行真空抽气,控制镀膜机内真空室的本底真空度为2
×
10-6
pa,加热基底使其温度保持在80℃;镀膜前先对基底进行离子束刻蚀,利用ar离子源轰击基底,使用ar离子源电压为650v,刻蚀深度200nm;使用双离子束溅射设备在上述处理过的基底上镀膜,主离子源电压为1250v,使用氩气作为主离子源气体,辅助离子源电压为650v,氩气和氧气流量比为1:5,充氧量为40sccm,控制膜料分子在基底上的沉积速率约为0.2nm/s。
[0039]
按照实际应用中在轨运行8年的gamma射线进行等剂量辐照实验,结果发现辐照前后光谱无明显变化,薄膜具有很好的抗辐照稳定性,图3为gamma射线辐照前后薄膜的光谱曲线。
[0040]
再对辐照后的薄膜按照iso 21254标准进行1-on-1激光损伤测试,图4为薄膜在gamma射线辐照前后1-on-1激光损伤几率。结果发现,采用本发明制备的薄膜经gamma射线辐照后激光损伤阈值基本不变,具有很好的抗空间辐照和抗激光损伤性能。
[0041]
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
起点商标作为专业知识产权交易平台,可以帮助大家解决很多问题,如果大家想要了解更多知产交易信息请点击 【在线咨询】或添加微信 【19522093243】与客服一对一沟通,为大家解决相关问题。
此文章来源于网络,如有侵权,请联系删除
热门咨询
tips