HI,欢迎来到起点商标网!
24小时服务QQ:2880605093

一种盲源分离方法及装置与流程

2021-01-28 17:01:10|434|起点商标网
一种盲源分离方法及装置与流程

本发明涉及信号分离技术领域,尤其涉及一种盲源分离方法及装置。



背景技术:

语音交互技术日益成熟,在语音交互过程中常会伴有干扰,这就需要通过盲源分离方法将目标语音提取出来。盲源分离是指从多个观测到的混合信号中分析出没有观测的原始信号,也就是在不知道源信号及信号混合参数的情况下,仅根据观测到的混合信号估计源信号,通常,观测信号来自多个传感器的输出。

独立向量分析(independentvectoranalysis,iva)是现有技术中一种常用的盲源分离方法,即将接收到的观测信号按照统计独立的原则分解为若干独立分量,将这些独立分量作为源信号的一种近似估计。然而,现有的基于独立向量分析的盲源分离方法,滤波器长度越长,分离效果越好,然而,同时带来的延迟也越高,使得分离效率较低,例如,滤波器长度至少要达到4096点,才能有较好的分离效果,假设采样频率为16000hz,那么算法带来的延迟达到256ms。



技术实现要素:

为了解决现有的基于独立向量分析的盲源分离方法分离效率较低的问题,本发明实施例提供了一种盲源分离方法及装置。

第一方面,本发明实施例提供了一种盲源分离方法,包括:

获取m个观测信号,所述m个观测信号是由m个麦克风采集的n个源信号的混合信号;

将所述观测信号从时域转换到频域,获得频域的观测信号;

根据独立向量分析算法逐频点计算所述频域的观测信号在各滤波块的解混矩阵,所述滤波块为利用频域滤波器分块算法对频域的观测信号进行分块获得的;

将所述频域的观测信号根据所述频域的观测信号在各滤波块的解混矩阵逐频点进行盲源分离,获得频域的分离信号;

将所述频域的分离信号转换到时域,获得时域的分离信号。

本发明实施例提供的盲源分离方法,服务器获取m个观测信号,所述m个观测信号是由m个麦克风采集的n个源信号的混合信号,将所述观测信号从时域转换到频域,获得相应的频域的观测信号,利用滤波器分块算法对所述频域的观测信号进行分块,根据独立向量分析算法逐频点计算所述频域的观测信号在各滤波块的解混矩阵,将所述频域的观测信号根据所述频域的观测信号在各滤波块的解混矩阵逐频点进行盲源分离,获得频域的分离信号,再将所述频域的分离信号转换到时域,获得相应的时域的分离信号,本发明实施例提供的上述盲源分离方法,在计算解混矩阵时,将独立向量分析算法和频域滤波器分块算法相结合,针对每一帧频域的观测信号,分块计算解混矩阵,在保证了分离效果的同时,大大降低了算法的延迟,提高了分离效率。

较佳地,根据独立向量分析算法逐频点计算所述频域的观测信号在各滤波块的解混矩阵,具体包括:

通过以下公式逐频点计算所述频域的观测信号在各滤波块的解混矩阵:

wb(k,n)=[ω1,b(k,n),ω2,b(k,n),......,ωm,b(k,n),......ωm,b(k,n)]

其中,wb(k,n)表示第n帧频域的观测信号在第k频率的第b+1个滤波块的解混矩阵,k表示频率索引,b=0,1,2,......,b-1,b表示滤波器块数;

ωm,b(k,n)表示wb(k,n)的第m列,m=1,2,......,m,m表示观测信号的个数,ωm,b(k,n)=(wb(k,n-1)vm(k,n))-1em;

wb(k,n-1)表示第n-1帧频域的观测信号在第k频率的第b+1个滤波块的解混矩阵,ωm,b(k,n-1)表示wb(k,n-1)的第m列;

vm(k,n)表示v(k,n)的第m列,v(k,n)表示第n帧第k个频率的加权协方差矩阵,v(k,n)=[v1(k,n),v2(k,n),......,vm(k,n),......,vm(k,n)]。

较佳地,通过以下公式计算vm(k,n):

其中,α表示平滑系数;

vm(k,n-1)表示第n-1帧第k个频率的加权协方差矩阵v(k,n-1)的第m列;

x(k,n-b)表示第n-b帧频域的观测信号在第k个频率的集合;

x(k,n-b)=[x1(k,n-b),x1(k,n-b),......,xm(k,n-b),......,xm(k,n-b)],

xm(k,n-b)表示第n-b帧第k个频率的第m个频域的观测信号。

较佳地,初始时,即当n=1时,

可选地,所述方法,还包括:

通过以下公式对ωm,b(k,n)进行归一化:

较佳地,通过以下公式获得频域的分离信号:

其中,y(k,n)表示第n帧频域的分离信号在k个频率的集合,y1(k,n),y2(k,n),......,yn(k,n)表示第n帧第k个频率的频域的分离信号,分别为y(k,n)的第1~n列。

第二方面,本发明实施例提供了一种盲源分离装置,包括:

获取单元,用于获取m个观测信号,所述m个观测信号是由m个麦克风采集的n个源信号的混合信号;

第一转换单元,用于将所述观测信号从时域转换到频域,获得频域的观测信号;

计算单元,用于根据独立向量分析算法逐频点计算所述频域的观测信号在各滤波块的解混矩阵,所述滤波块为利用频域滤波器分块算法对频域的观测信号进行分块获得的;

分离单元,用于将所述频域的观测信号根据所述频域的观测信号在各滤波块的解混矩阵逐频点进行盲源分离,获得频域的分离信号;

第二转换单元,用于将所述频域的分离信号转换到时域,获得时域的分离信号。

较佳地,所述计算单元,具体用于通过以下公式逐频点计算所述频域的观测信号在各滤波块的解混矩阵:

其中,wb(k,n)表示第n帧频域的观测信号在第k频率的第b+1个滤波块的解混矩阵,k表示频率索引,b=0,1,2,......,b-1,b表示滤波器块数;

ωm,b(k,n)表示wb(k,n)的第m列,m=1,2,......,m,m表示观测信号的个数,ωm,b(k,n)=(wb(k,n-1)vm(k,n))-1em;

wb(k,n-1)表示第n-1帧频域的观测信号在第k频率的第b+1个滤波块的解混矩阵,ωm,b(k,n-1)表示wb(k,n-1)的第m列;

vm(k,n)表示v(k,n)的第m列,v(k,n)表示第n帧第k个频率的加权协方差矩阵,v(k,n)=[v1(k,n),v2(k,n),......,vm(k,n),......,vm(k,n)]。

较佳地,所述计算单元,具体用于通过以下公式计算vm(k,n):

其中,α表示平滑系数;

vm(k,n-1)表示第n-1帧第k个频率的加权协方差矩阵v(k,n-1)的第m列;

x(k,n-b)表示第n-b帧频域的观测信号在第k个频率的集合;

x(k,n-b)=[x1(k,n-b),x1(k,n-b),......,xm(k,n-b),......,xm(k,n-b)],

xm(k,n-b)表示第n-b帧第k个频率的第m个频域的观测信号。

较佳地,初始时,即当n=1时,

可选地,所述计算单元,还用于通过以下公式对ωm,b(k,n)进行归一化:

较佳地,所述分离单元,具体用于通过以下公式获得频域的分离信号:

其中,y(k,n)表示第n帧频域的分离信号在k个频率的集合,y1(k,n),y2(k,n),......,yn(k,n)表示第n帧第k个频率的频域的分离信号,分别为y(k,n)的第1~n列。

本发明提供的盲源分离装置的技术效果可以参见上述第一方面或第一方面的各个实现方式的技术效果,此处不再赘述。

第三方面,本发明实施例提供了一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述程序时实现本发明所述的盲源分离方法。

第四方面,本发明实施例提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现本发明所述的盲源分离方法中的步骤。

本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在所写的说明书、权利要求书、以及附图中所特别指出的结构来实现和获得。

附图说明

此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:

图1为本发明实施例提供的盲源分离方法的实施流程示意图;

图2为本发明实施例提供的盲源分离装置的结构示意图;

图3为本发明实施例提供的电子设备的结构示意图。

具体实施方式

为了解决现有的基于独立向量分析的盲源分离方法分离效率较低的问题,本发明提出了一种盲源分离方法及装置。

以下结合说明书附图对本发明的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明,并且在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。

如图1所示,其为本发明实施例提供的盲源分离方法的实施流程示意图,可以包括以下步骤:

s11、获取m个观测信号。

具体实施时,服务器获取m个观测信号,其中,所述m个观测信号是由m个麦克风采集的n个源信号的混合信号,所述m个观测信号也可以由m个传感器采集,本发明实施例对此不作限定。如果观测信号由麦克风采集,则m即为麦克风通道数,如果观测信号由传感器采集,则m即为传感器个数。

具体地,假设第n帧的n个独立的源信号s1(n),s2(n),......,sn(n),经过房间冲击响应(即混合矩阵a,a是一个m×n维传递函数矩阵),由m个麦克风采集获得m个观测信号x1(n),x2(n),......,xm(n),由s(n)=[s1(n),s2(n),......,sn(n)]来表示第n帧源信号s1(n),s2(n),......,sn(n)的集合,由x(n)=[x1(n),x2(n),......,xm(n)]来表示第n帧观测信号的集合,则有:x(n)=as(n)。

s12、将所述观测信号从时域转换到频域,获得频域的观测信号。

具体实施时,服务器将所述m个观测信号从时域转换到频域,获得相应的频域的观测信号。

具体地,可以但不限于利用短时傅里叶变换(short-timefouriertransform,stft)将所述观测信号从时域转换到频域,本发明实施例对此不作限定。

s13、根据独立向量分析算法逐频点计算所述频域的观测信号在各滤波块的解混矩阵,所述滤波块为利用频域滤波器分块算法对频域的观测信号进行分块获得的。

具体实施时,服务器根据独立向量分析算法逐频点计算所述频域的观测信号在各滤波块的解混矩阵,所述滤波块为利用频域滤波器分块算法对所述频域的观测信号进行分块获得的,其中,频域滤波器分块算法可以采用分块频域自适应滤波(blockfrequencydomainadaptivefilter,bfdaf)算法。

具体地,可以通过以下公式逐频点计算所述频域的观测信号在各滤波块的解混矩阵:

wb(k,n)=[ω1,b(k,n),ω2,b(k,n),......,ωm,b(k,n),......ωm,b(k,n)]

其中,wb(k,n)表示第n帧频域的观测信号在第k频率的第b+1个滤波块的解混矩阵,k表示频率索引,k=1,2,......,k,k表示频率个数,b=0,1,2,......,b-1,b表示滤波器块数;

ωm,b(k,n)表示wb(k,n)的第m列,m=1,2,......,m,m表示观测信号的个数,ωm,b(k,n)=(wb(k,n-1)vm(k,n))-1em;

wb(k,n-1)表示第n-1帧频域的观测信号在第k频率的第b+1个滤波块的解混矩阵,ωm,b(k,n-1)表示取wb(k,n-1)的第m列;

vm(k,n)表示v(k,n)的第m列,v(k,n)表示第n帧第k个频率的加权协方差矩阵,v(k,n)=[v1(k,n),v2(k,n),......,vm(k,n),......,vm(k,n)]。

具体实施时,ωm,b(k,n)=(wb(k,n-1)vm(k,n))-1em中的em表示取矩阵(wb(k,n-1)vm(k,n))-1的第m列。

通过以下公式计算vm(k,n):

其中,α表示平滑系数;

vm(k,n-1)表示第n-1帧第k个频率的加权协方差矩阵v(k,n-1)的第m列;

表示ωm,b(k,n)的共轭转置矩阵;

x(k,n-b)表示第n-b帧频域的观测信号在第k个频率的集合;x(k,n-b)=[x1(k,n-b),x1(k,n-b),......,xm(k,n-b),......,xm(k,n-b)],xm(k,n-b)表示第n-b帧第k个频率的第m个频域的观测信号,当n-b≤0时,x(k,n-b)=0;

xh(k,n-b)表示x(k,n-b)的共轭转置矩阵。

具体实施时,α的取值可以根据需要自行设定,例如可以取值0.8、0.85或者0.9等,本发明实施例对此不作限定。

初始时,即n=1时,

即ωm,b(k,1)为m×1维单位矩阵;

即vm(k,1)为m×1维单位矩阵。

进一步地,当计算出解混矩阵wb(k,n)后,可以对wb(k,n)中的每一ωm,b(k,n)进行归一化处理,获得归一化后的解混矩阵wb(k,n)。

具体地,通过以下公式对ωm,b(k,n)进行归一化:

需要说明的是,上述加权协方差公式rm(n)表示滤波后信号在频域的能量。

而现有技术中iva算法的加权协方差公式为:

其中,表示第n帧频域的观测信号在第k频率的解混矩阵w(k,n)的第m列ωm(k,n)的共轭转置矩阵,m=1,2,......,m,m表示观测信号的个数,x(k,n)表示第n帧频域的观测信号在第k个频率的集合,xh(k,n)表示x(k,n)的共轭转置矩阵,其中,即滤波后信号在频域的能量。

相比于现有技术中的rm(n),本申请中,滤波后信号在频域的能量是分块滤波后的每次滤波后信号在频域的能量之和,由于预先分成b个滤波块,每次滤波后信号在频域的能量即相当于现有技术中rm(n)的1/b,从而使得每次滤波后信号在频域的能量消耗大大降低。

s14、将所述频域的观测信号根据所述频域的观测信号在各滤波块的解混矩阵逐频点进行盲源分离,获得频域的分离信号。

具体实施时,服务器将所述频域的观测信号根据所述频域的观测信号在各滤波块的解混矩阵逐频点进行盲源分离,获得频域的分离信号。

具体地,针对每一频率,可以通过以下公式获得频域的分离信号:

其中,wb(k,n)为归一化后的第n帧频域的观测信号在第k频率的第b+1个滤波块的解混矩阵;

y(k,n)表示第n帧频域的分离信号在k个频率的集合,y1(k,n),y2(k,n),......,yn(k,n)表示第n帧第k个频率的频域的分离信号,分别为y(k,n)的第1~n列。

s15、将所述频域的分离信号转换到时域,获得时域的分离信号。

具体实施时,服务器将所述频域的分离信号转换到时域,获得时域的分离信号。

具体地,可以但不限于利用逆短时傅里叶变换(inverseshort-timefouriertransform,inversestft)将所述频域的分离信号转换到时域,本发明实施例对此不作限定。

本发明实施例提供的盲源分离方法,服务器获取m个观测信号,所述m个观测信号是由m个麦克风采集的n个源信号的混合信号,将所述观测信号从时域转换到频域,获得相应的频域的观测信号,利用滤波器分块算法对所述频域的观测信号进行分块,根据独立向量分析算法逐频点计算所述频域的观测信号在各滤波块的解混矩阵,将所述频域的观测信号根据所述频域的观测信号在各滤波块的解混矩阵逐频点进行盲源分离,获得频域的分离信号,再将所述频域的分离信号转换到时域,获得相应的时域的分离信号,本发明实施例提供的上述盲源分离方法,在计算解混矩阵时,将独立向量分析算法和频域滤波器分块算法相结合,针对每一帧频域的观测信号,分块计算解混矩阵,在保证了分离效果的同时,大大降低了算法的延迟,提高了分离效率。例如,现有技术中利用iva算法进行盲源分离时,假设滤波器长度为4096点,采样频率为16khz,那么算法带来的延迟是256ms,而利用本发明提供的盲源分离方法带来的延迟将降低到1块滤波块的延迟,假设将滤波器分为16个滤波块,则每块的长度为4096/16=256点,则延迟为16ms,是现有的iva算法延迟的1/16。

基于同一发明构思,本发明实施例还提供了一种盲源分离装置,由于上述盲源分离装置解决问题的原理与盲源分离方法相似,因此上述装置的实施可以参见方法的实施,重复之处不再赘述。

如图2所示,其为本发明实施例提供的盲源分离装置的结构示意图,可以包括:

获取单元21,用于获取m个观测信号,所述m个观测信号是由m个麦克风采集的n个源信号的混合信号;

第一转换单元22,用于将所述观测信号从时域转换到频域,获得频域的观测信号;

计算单元23,用于根据独立向量分析算法逐频点计算所述频域的观测信号在各滤波块的解混矩阵,所述滤波块为利用频域滤波器分块算法对频域的观测信号进行分块获得的;

分离单元24,用于将所述频域的观测信号根据所述频域的观测信号在各滤波块的解混矩阵逐频点进行盲源分离,获得频域的分离信号;

第二转换单元25,用于将所述频域的分离信号转换到时域,获得时域的分离信号。

较佳地,所述计算单元,具体用于通过以下公式逐频点计算所述频域的观测信号在各滤波块的解混矩阵:

其中,wb(k,n)表示第n帧频域的观测信号在第k频率的第b+1个滤波块的解混矩阵,k表示频率索引,b=0,1,2,......,b-1,b表示滤波器块数;

ωm,b(k,n)表示wb(k,n)的第m列,m=1,2,......,m,m表示观测信号的个数,ωm,b(k,n)=(wb(k,n-1)vm(k,n))-1em;

wb(k,n-1)表示第n-1帧频域的观测信号在第k频率的第b+1个滤波块的解混矩阵,ωm,b(k,n-1)表示wb(k,n-1)的第m列;

vm(k,n)表示v(k,n)的第m列,v(k,n)表示第n帧第k个频率的加权协方差矩阵,v(k,n)=[v1(k,n),v2(k,n),......,vm(k,n),......,vm(k,n)]。

较佳地,所述计算单元23,具体用于通过以下公式计算vm(k,n):

其中,α表示平滑系数;

vm(k,n-1)表示第n-1帧第k个频率的加权协方差矩阵v(k,n-1)的第m列;

x(k,n-b)表示第n-b帧频域的观测信号在第k个频率的集合;

x(k,n-b)=[x1(k,n-b),x1(k,n-b),......,xm(k,n-b),......,xm(k,n-b)],

xm(k,n-b)表示第n-b帧第k个频率的第m个频域的观测信号。

较佳地,初始时,即当n=1时,

可选地,所述计算单元23,还用于通过以下公式对ωm,b(k,n)进行归一化:

较佳地,所述分离单元24,具体用于通过以下公式获得频域的分离信号:

其中,y(k,n)表示第n帧频域的分离信号在k个频率的集合,y1(k,n),y2(k,n),......,yn(k,n)表示第n帧第k个频率的频域的分离信号,分别为y(k,n)的第1~n列。

基于同一技术构思,本发明实施例还提供了一种电子设备300,参照图3所示,电子设备300用于实施上述方法实施例记载的盲源分离方法,该实施例的电子设备300可以包括:存储器301、处理器302以及存储在所述存储器中并可在所述处理器上运行的计算机程序,例如盲源分离程序。所述处理器执行所述计算机程序时实现上述各个盲源分离方法实施例中的步骤,例如图1所示的步骤s11。或者,所述处理器执行所述计算机程序时实现上述各装置实施例中各模块/单元的功能,例如21。

本发明实施例中不限定上述存储器301、处理器302之间的具体连接介质。本申请实施例在图3中以存储器301、处理器302之间通过总线303连接,总线303在图3中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线303可以分为地址总线、数据总线、控制总线等。为便于表示,图3中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。

存储器301可以是易失性存储器(volatilememory),例如随机存取存储器(random-accessmemory,ram);存储器301也可以是非易失性存储器(non-volatilememory),例如只读存储器,快闪存储器(flashmemory),硬盘(harddiskdrive,hdd)或固态硬盘(solid-statedrive,ssd)、或者存储器301是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器301可以是上述存储器的组合。

处理器302,用于实现如图1所示的一种盲源分离方法,包括:

所述处理器302,用于调用所述存储器301中存储的计算机程序执行如图1中所示的步骤s11、获取m个观测信号,步骤s12、将所述观测信号从时域转换到频域,获得频域的观测信号,步骤s13、根据独立向量分析算法逐频点计算所述频域的观测信号在各滤波块的解混矩阵,所述滤波块为利用频域滤波器分块算法对频域的观测信号进行分块获得的,s14、将所述频域的观测信号根据所述频域的观测信号在各滤波块的解混矩阵逐频点进行盲源分离,获得频域的分离信号,和步骤s15、将所述频域的分离信号转换到时域,获得时域的分离信号。

本申请实施例还提供了一种计算机可读存储介质,存储为执行上述处理器所需执行的计算机可执行指令,其包含用于执行上述处理器所需执行的程序。

在一些可能的实施方式中,本发明提供的盲源分离方法的各个方面还可以实现为一种程序产品的形式,其包括程序代码,当所述程序产品在电子设备上运行时,所述程序代码用于使所述电子设备执行本说明书上述描述的根据本发明各种示例性实施方式的盲源分离方法中的步骤,例如,所述电子设备可以执行如图1中所示的步骤s11、获取m个观测信号,步骤s12、将所述观测信号从时域转换到频域,获得频域的观测信号,步骤s13、根据独立向量分析算法逐频点计算所述频域的观测信号在各滤波块的解混矩阵,所述滤波块为利用频域滤波器分块算法对频域的观测信号进行分块获得的,s14、将所述频域的观测信号根据所述频域的观测信号在各滤波块的解混矩阵逐频点进行盲源分离,获得频域的分离信号,和步骤s15、将所述频域的分离信号转换到时域,获得时域的分离信号。

所述程序产品可以采用一个或多个可读介质的任意组合。可读介质可以是可读信号介质或者可读存储介质。可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式盘、硬盘、随机存取存储器(ram)、只读存储器(rom)、可擦式可编程只读存储器(eprom或闪存)、光纤、便携式紧凑盘只读存储器(cd-rom)、光存储器件、磁存储器件、或者上述的任意合适的组合。

本发明的实施方式的用于盲源分离的程序产品可以采用便携式紧凑盘只读存储器(cd-rom)并包括程序代码,并可以在计算设备上运行。然而,本发明的程序产品不限于此,在本文件中,可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。

可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了可读程序代码。这种传播的数据信号可以采用多种形式,包括——但不限于——电磁信号、光信号或上述的任意合适的组合。可读信号介质还可以是可读存储介质以外的任何可读介质,该可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。

可读介质上包含的程序代码可以用任何适当的介质传输,包括——但不限于——无线、有线、光缆、rf等等,或者上述的任意合适的组合。

可以以一种或多种程序设计语言的任意组合来编写用于执行本发明操作的程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如java、c++等,还包括常规的过程式程序设计语言—诸如“c”语言或类似的程序设计语言。程序代码可以完全地在用户计算设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户计算设备上部分在远程计算设备上执行、或者完全在远程计算设备或服务器上执行。在涉及远程计算设备的情形中,远程计算设备可以通过任意种类的网络——包括局域网(lan)或广域网(wan)—连接到用户计算设备,或者,可以连接到外部计算设备(例如利用因特网服务提供商来通过因特网连接)。

应当注意,尽管在上文详细描述中提及了装置的若干单元或子单元,但是这种划分仅仅是示例性的并非强制性的。实际上,根据本发明的实施方式,上文描述的两个或更多单元的特征和功能可以在一个单元中具体化。反之,上文描述的一个单元的特征和功能可以进一步划分为由多个单元来具体化。

此外,尽管在附图中以特定顺序描述了本发明方法的操作,但是,这并非要求或者暗示必须按照该特定顺序来执行这些操作,或是必须执行全部所示的操作才能实现期望的结果。附加地或备选地,可以省略某些步骤,将多个步骤合并为一个步骤执行,和/或将一个步骤分解为多个步骤执行。

本领域内的技术人员应明白,本发明的实施例可提供为方法、装置、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、cd-rom、光学存储器等)上实施的计算机程序产品的形式。

本发明是参照根据本发明实施例的方法、设备(装置)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。

这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。

这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。

尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。

显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

起点商标作为专业知识产权交易平台,可以帮助大家解决很多问题,如果大家想要了解更多知产交易信息请点击 【在线咨询】或添加微信 【19522093243】与客服一对一沟通,为大家解决相关问题。

此文章来源于网络,如有侵权,请联系删除

tips