HI,欢迎来到起点商标网!
24小时服务QQ:2880605093

基于自适应神经网络滑模控制的多关节机器人控制方法与流程

2021-01-19 13:01:12|294|起点商标网
基于自适应神经网络滑模控制的多关节机器人控制方法与流程

本发明涉及一种基于自适应神经网络滑模控制的多关节机器人的优化控制方法,应用于多关节机器人的运动控制领域。



背景技术:

多关节机器人是一个复杂的系统,具有强耦合、快时变性和非线性等特点,并存在模型不精确、参数变化、摩擦、外部干扰等不确定性因素的影响。因此,在实际系统中很难建立精确的多关节机器人模型。径向基函数神经网络具有高度的非线性逼近映射能力和在线学习能力,利用径向基函数神经网络设计控制系统不依赖于多关节机器人的数学模型,且具有很强的实时性。因此,径向基函数神经网络非常适用于解决多关节机器人的建模问题。利用径向基函数在线逼近多关节机器人的动力学模型,同时利用自适应神经网络控制率实现系统的实时优化,并引入鲁棒滑模控制器用于提高系统的稳定性和抗干扰能力。



技术实现要素:

本发明的目的在于克服已有技术存在的不足,提供一种基于自适应神经网络滑模控制的多关节机器人控制方法,通过径向基函数神经网络控制在线逼近多关节机器人的动力学模型,建立实时更新的多关节机器人控制系统。

为达到上述目的,本发明采用如下技术方案:

一种基于自适应神经网络滑模控制的多关节机器人控制方法,操作步骤如下:

a.构建多关节机器人的模型:

利用拉格朗日动力学方程建立多关节机器人的动力学模型如下:

式中,是多关节机器人的惯性矩阵,表示离心力和哥式力,是重力项,表示由建模误差、额外干扰等因素引起的系统不确定性,δd(q),δg(q)分别是矩阵d(q),g(q)的建模误差,τd(t)是额外干扰力,分别是关节的旋转角度、角速度和角加速度,t(t)是输出力矩,n是关节的数量,t表示时间;对双关节机器人,n=2,矩阵d(q),和g(q)表达式如下:

式中,p=[p1,p2,p3,p4,p5]t表示机器人的模型参数向量,且有

式中,m1,m2表示机器人关节连杆的质量,l1,l2表示机器人关节连杆的长度,i1,i2表示机器人关节连杆的转动惯量;

b.自适应神经网络滑模控制:

定义多关节机器人的关节角度误差函数e(t)及其一阶导数如下:

e(t)=q(t)-qd(t)(6)

定义辅助函数α(t)和滑模面函数s(t)如下:

利用径向基函数神经网络对矩阵d(q),和g(q)分别建模,结果如下:

d(q)=dsnn(q)+εd(q)(10)

g(q)=gsnn(q)+εg(q)(12)

式中,dsnn(q),和gsnn(q)是神经网络的输出,是神经网络建模的理想权重,hd(q),和hg(q)是径向基函数,εd(q),εg(q)分别是神经网络对d(q),g(q)的建模误差;

矩阵dsnn(q),和gsnn(q)的估计值为:

式中,分别是的估计权值;神经网络控制器设计如下:

系统总控制器设计如下:

t(t)=tnn(t)+tr(t)+tf(t)(17)

tf(t)=-kfs(20)

式中,qd(t)是机器人关节角度的期望值,λ>0是滑模系数,tr是鲁棒滑模控制器,用于补偿机器人系统中存在的不确定性,k1,k2是控制增益,kf是一个正定对称矩阵;用于求解估计权值的自适应控制率设计如下:

式中,γmi,γvi,γgi是正定对称矩阵,hdi(q)∈hd(q),

利用自适应神经网络控制率求解神经网络的权值,在线逼近多关节机器人的模型参数,神经网络控制器可实时地进行更新;给定多关节机器人的期望关节角度qd(t),在神经网络控制器、鲁棒滑模控制器和自适应神经网络控制率的作用下,可实现多关节机器人的实际关节运动角度q(t)对期望轨迹qd(t)的有效跟踪,并且具有较强的抗干扰能力;

c.构建多关节机器人matlab/simulink仿真模型:

基于所述自适应神经网络控制方法的上述步骤,在matlab/simulink中搭建多关节机器人单臂控制的仿真模型;该仿真模型包含四个主要模块,分别是输入模块、控制器模块、动力学模型模块和输出模块;其中,控制器模块是由鲁棒滑模控制器模块、神经网络控制器模块及自适应神经网络控制率模块构成;

输入模块用于定义多关节机器人的期望关节角度qd(t);输入模块用于输出机器人末端执行器的目标运动轨迹或期望轨迹;

鲁棒滑模控制器模块、神经网络控制器模块和自适应神经网络控制率模块组成总控制器,用于控制多关节机器人的轨迹跟踪运动,设置多关节机器人模型模块用于定义多关节机器人的动力学模型,自适应神经网络控制率模块对神经网络控制器模块进行补偿,鲁棒滑模控制器模块和神经网络控制器模块控制多关节机器人模型模块,自适应神经网络控制率模块输出估计权值;

输出模块用于输出神经网络控制器的估计权值,输出模块用于输出多关节机器人的关节运动的实际轨迹;

d.仿真结果分析:

根据仿真结果,分别得到机器人关节角度和角速度的跟踪情况,以及误差的收敛情况;具体包括关节1的角度和角速度的轨迹跟踪情况图,关节2的角度和角速度的轨迹跟踪情况图,关节角度和加速度的轨迹跟踪误差图。

本发明与现有技术相比较,具有如下显而易见的突出实质性特点和显著优点:

1.本发明提出一种自适应神经网络滑模控制方法,用于解决多关节机器人的轨迹跟踪问题;在控制系统中,利用径向基函数神经网络控制器逼近多关节机器人的动态系统模型,可以有效地解决多关节机器人控制模型不精确的问题,且控制器结构相对简单,实时控制性能较好;

2.本发明在控制器中加入了鲁棒滑模控制器,有助于提高多关节机器人的抗干扰能力,同时能够提高系统的稳定性。

附图说明

图1为本发明基于多关节机器人自适应神经网络滑模控制的控制系统架构图。

图2为本发明基于多关节机器人自适应神经网络滑模控制的控制系统

matlab/simulink仿真图。

图3为本发明实施例二的关节1的角度和角速度跟踪轨迹。

图4为本发明实施例二的关节2的角度和角速度跟踪轨迹。

图5为本发明实施例二的关节角度和角速度的轨迹跟踪误差。

具体实施方式

本发明的优选实施例结合附图详述如下:

实施例一:

参见图1-图2,一种基于自适应神经网络滑模控制的多关节机器人控制方法,操作步骤如下:

a.构建多关节机器人的模型:

利用拉格朗日动力学方程建立多关节机器人的动力学模型如下:

式中,是多关节机器人的惯性矩阵,表示离心力和哥式力,是重力项,表示由建模误差、额外干扰等因素引起的系统不确定性,δd(q),δg(q)分别是矩阵d(q),g(q)的建模误差,τd(t)是额外干扰力,分别是关节的旋转角度、角速度和角加速度,t(t)是输出力矩,n是关节的数量;对双关节机器人,n=2,矩阵d(q),和g(q)表达式如下:

式中,p=[p1,p2,p3,p4,p5]t表示机器人的模型参数向量,且有

式中,m1,m2表示机器人关节连杆的质量,l1,l2表示机器人关节连杆的长度,i1,i2表示机器人关节连杆的转动惯量;

b.自适应神经网络滑模控制:

定义多关节机器人的关节角度误差函数e(t)及其一阶导数如下:

e(t)=q(t)-qd(t)(6)

定义辅助函数α(t)和滑模面函数s(t)如下:

利用径向基函数神经网络对矩阵d(q),和g(q)分别建模,结果如下:

d(q)=dsnn(q)+εd(q)(10)

g(q)=gsnn(q)+εg(q)(12)

式中,dsnn(q),和gsnn(q)是神经网络的输出,是神经网络建模的理想权重,hd(q),和hg(q)是径向基函数,εd(q),εg(q)分别是神经网络对d(q),g(q)的建模误差;

矩阵dsnn(q),和gsnn(q)的估计值为:

式中,分别是的估计权值;神经网络控制器设计如下:

系统总控制器设计如下:

t(t)=tnn(t)+tr(t)+tf(t)(17)

tf(t)=-kfs(20)

式中,qd(t)是机器人关节角度的期望值,λ>0是滑模系数,tr是鲁棒滑模控制器,用于补偿机器人系统中存在的不确定性,k1,k2是控制增益,kf是一个正定对称矩阵;用于求解估计权值的自适应控制率设计如下:

式中,γmi,γvi,γgi是正定对称矩阵,hdi(q)∈hd(q),hgi(q)∈hg(q);

利用自适应神经网络控制率求解神经网络的权值,在线逼近多关节机器人的模型参数,神经网络控制器)可实时地进行更新;给定多关节机器人的期望关节角度qd(t),在神经网络控制器、鲁棒滑模控制器和自适应神经网络控制率的作用下,可实现多关节机器人的实际关节运动角度q(t)对期望轨迹qd(t)的有效跟踪,并且具有较强的抗干扰能力;

c.构建多关节机器人matlab/simulink仿真模型:

基于所述自适应神经网络控制方法的上述步骤,在matlab/simulink中搭建多关节机器人单臂控制的仿真模型;该仿真模型包含四个主要模块,分别是输入模块1、控制器模块9、动力学模型模块和输出模块8;其中,控制器模块9是由鲁棒滑模控制器模块3、神经网络控制器模块4及自适应神经网络控制率模块5构成;

输入模块1用于定义多关节机器人的期望关节角度qd(t);输入模块(1)用于输出机器人末端执行器的目标运动轨迹或期望轨迹;

鲁棒滑模控制器模块3、神经网络控制器模块4和自适应神经网络控制率模块5组成总控制器,用于控制多关节机器人的轨迹跟踪运动,设置多关节机器人模型模块6用于定义多关节机器人的动力学模型,自适应神经网络控制率模块5对神经网络控制器模块4进行补偿,鲁棒滑模控制器模块3和神经网络控制器模块4控制多关节机器人模型模块6,自适应神经网络控制率模块5输出估计权值;

输出模块8用于输出神经网络控制器的估计权值,输出模块8用于输出多关节机器人的关节运动的实际轨迹;

d.仿真结果分析:

根据仿真结果,分别得到机器人关节角度和角速度的跟踪情况,以及误差的收敛情况;具体包括关节1的角度和角速度的轨迹跟踪情况图,关节2的角度和角速度的轨迹跟踪情况图,关节角度和加速度的轨迹跟踪误差图。

实施例二:

本实施例与实施例一基本相同,特别之处在于:

参考图1~图5,基于自适应神经网络滑模控制器的多关节机器人控制方法,操作步骤如下:

a.多关节机器人的模型

根据上述发明内容a的内容,双关节机器人动力学模型如下:

式中,q=[q1q2]t,q1,q2是机器人关节的运动角度。m1=4.58kg,m2=6.52kg,l1=0.3m,l2=0.35m,g=9.8m/s2,其中kg是质量单位千克,m是长度单位米,s是时间单位秒。初始位置是q(0)=[0.10.6]t干扰设为

b.自适应神经网络滑模控制

根据上述发明内容b的内容,基于自适应神经网络滑模控制的多关节机器人控制器如下:

t(t)=tnn+tr+tf(25)

tf=-kfs(28)

自适应神经网络控制率如下:

式中,k1=5,km=km=kc=kc=kg=0.01,δ=0.01,λ=diag[55],kf=diag[150150]。

c.多关节机器人matlab/simulink仿真模型

根据上述发明内容c的内容,建立如图1所示的基于自适应神经网络鲁棒控制器的多关节机器人控制系统模型。

d.仿真结果分析

通过仿真结果可以得到多关节机器人关节的角度和角速度的跟踪情况,以及误差的收敛情况。图1是基于自适应神经网络鲁棒控制器的多关节机器人控制系统架构,图2是控制系统matlab/simulink仿真模型,图3是关节1的角度和角速度跟踪情况,图4是关节2的角度和角速度跟踪情况,图5是关节角度和角速度的轨迹跟踪误差。角度的量纲是弧度,角速度的量纲是弧度每秒。从图3和图4看出自适应神经网络滑模控制器对期望关节轨迹(角度和角速度)具有良好的跟踪效果。根据图5,肩关节和肘关节的角度跟踪误差和角速度跟踪误差都能够快速收敛至零,并且逐渐稳定在零的某一个很小的领域之内。根据仿真结果,对于给定的多关节机器人,在自适应神经网络滑模控制器和自适应神经网络控制率的作用下,多关节机器人能够实现对期望轨迹的有效跟踪,并且关节的跟踪误差是最终一致有界的。

本实施例基于自适应神经网络技术设计了多关节机器人的控制方法,有效地提高多关节机器人系统的抗干扰能力及最小化跟踪误差,对提高多关节机器人的控制性能具有一定的借鉴意义。

综上所述,上述实施例基于自适应神经网络滑模控制器的多关节机器人控制方法,应用于多关节机器人控制系统设计领域。其方法的操作步骤为:1)利用拉格朗日动力学方程建立多关节机器人系统的动力学模型;2)基于自适应神经网络滑模控制设计多关节机器人的控制系统模型;3)在matlab/simulink中建立多关节机器人的控制仿真模型;4)通过仿真实验,分析在自适应神经网络滑模控制器的作用下,多关节机器人的角度及角速度跟踪误差,以及误差收敛情况。上述实施例方法具有创新性和仿真依据,可解决现有多关节机器人运动控制中误差较大及鲁棒性不足等缺陷,对多关节机器人控制系统的设计具有重大的指导意义。

上面对本发明实施例结合附图进行了说明,但本发明不限于上述实施例,还可以根据本发明的发明创造的目的做出多种变化,凡依据本发明技术方案的精神实质和原理下做的改变、修饰、替代、组合或简化,均应为等效的置换方式,只要符合本发明的发明目的,只要不背离本发明的技术原理和发明构思,都属于本发明的保护范围。

起点商标作为专业知识产权交易平台,可以帮助大家解决很多问题,如果大家想要了解更多知产交易信息请点击 【在线咨询】或添加微信 【19522093243】与客服一对一沟通,为大家解决相关问题。

此文章来源于网络,如有侵权,请联系删除

tips