HI,欢迎来到起点商标网!
24小时服务QQ:2880605093

一种乙烯-乙酸乙烯酯/碳复合纳米纤维的制备方法与应用与流程

2021-01-13 12:01:21|299|起点商标网
一种乙烯-乙酸乙烯酯/碳复合纳米纤维的制备方法与应用与流程

本发明属于储能器件,具体来说,涉及一种乙烯-乙酸乙烯酯/碳复合纳米纤维的制备方法,及其在金属-空气电池中的应用。



背景技术:

金属-空气电池作为一种新型能源转换储存技术,由于其较高的理论比能量密度、部分金属-空气电池的二次循环使用能力以及低廉的价格和环境友好等优点而受到广泛的关注。传统的固态金属-空气电池由金属电极、固态电解质和空气电极组成。其中固态电解质作为整个器件的“血液”起着至关重要的作用,并且器件整体使用寿命几乎完全由固态电解质决定。无论是哪一类固态金属-空气电池,在其电解质中实现离子导通的主要载体均为电解质的孔隙中储存的液体。在目前的大多数固态金属-空气电池中,电解质采用的是氢氧化钾体系。然而,氢氧化钾体系的固态电解质在全固态半开放式金属-空气电池中存在着很大的一个问题,即电解质的失水问题。当固态电解质的水分散失达到一定程度,电解质便会失去离子导通能力,致使整个器件断路,从而使其失去电池效应。而固态半开放式金属-空气电池电解质最主要的水分散失原因在于电池正极的与外界连通。在固态半开放式金属-空气电池体系中,电解质的水分的散失速率便成为了电池寿命以及电池的某些其它性能的一个决定因素。

为此需要研发一种用于固态半开放式金属-空气电池的疏水、透气、导电正极材料,不仅可以达到原有的半开放式结构要求,又能使整个器件内部水分的散失得到一定的限制而减缓,从而延长电池的使用寿命及高性能有效时长的延长。



技术实现要素:

本发明的目的在于克服现有技术的不足,而提供一种乙烯-乙酸乙烯酯/碳复合纳米纤维的制备方法与应用,该制备方法过程简单、环保、易于操作,制备的碳复合纳米纤维具有疏水、透气、导电性能,将其作为金属-空气电池的正极材料,不仅可以大大的提高电池的工作时间及循环寿命,还能在一定程度上提高其充放电性能。

实现本发明目的的技术方案是:

一种乙烯-乙酸乙烯酯/碳复合纳米纤维的制备方法,取乙烯-乙酸乙烯酯共聚物溶解于二氯甲烷中,加入导电炭黑制成纺丝液;然后采用静电纺丝仪在碳布表面进行纺丝,成膜后经低温干燥处理,制备得到乙烯-乙酸乙烯酯/碳复合纳米纤维。

所述乙烯-乙酸乙烯酯共聚物的浓度为300-600g·l-1,其中乙酸乙烯占比为40wt%;

所述导电炭黑的浓度为5-15g·l-1

所述乙烯-乙酸乙烯酯共聚物与导电炭黑的重量份为:(0.6-1.2):(0.1-0.5);

所述二氯甲烷作为纺丝液的溶剂,其纯度为≥99.9%,其用量以能溶解乙烯-乙酸乙烯酯共聚物为宜。

所述静电纺丝过程中电压为15-25kv、喷射速度为0.5-2mm/min;

所述成膜低温干燥处理在空气、氩气或氮气中的一种气氛中进行,处理温度为30-50℃、时间为3-5h。

本发明还提供了上述制备方法制得的乙烯-乙酸乙烯酯/碳复合纳米纤维在作为金属-空气电池正极材料的应用,所述金属-空气电池为三明治结构的固态半开放式金属-空气电池。

本发明所述乙烯-乙酸乙烯酯/碳复合纳米纤维在作为金属-空气电池正极材料的应用,具体方法是:在三明治结构的固态半开放式金属-空气电池的正极碳布内侧加入一层乙烯-乙酸乙烯酯/碳复合纳米纤维层,两者合二为一作为新的导电正极材料。

乙烯-乙酸乙烯酯共聚物(eva),由于在分子链中引入了乙酸乙烯单体,从而降低了高结晶度,提高了柔韧性、抗冲击性、填料相溶性和热密封性能。eva的性能主要取决于分子链上乙酸乙烯的含量。

现有的技术相比,本发明具有如下的有益效果:

本发明制备方法过程简单、环保、易于操作,采用静电纺丝技术,将混合液制备成一层薄膜结构,这层结构完美的展现出了原有材料的各项性能,并进一步提升了原有的疏水能力。该层结构在实际的器件测试中也体现出了其很好的性能,在锌-空电池的固态三明治结构器件中,有明显的使用寿命的提升。

本发明制备的碳复合纳米纤维具有疏水、透气、导电性能,使用带有该碳复合纳米纤维的碳布代替原本未作处理的碳布作为金属-空电池的正极材料,材料中eva具有一定的疏水性,经过静电纺丝纳米纤维化后,表现出较好的长效疏水性能。从物理阻隔方面,能有效地减缓器件内部水分的散失。由于导电炭黑的加入,使得原本绝缘疏水的乙烯-乙酸乙烯酯共聚物材料具备了导电性能。材料的疏水、导电、透气性能使其在固态半开放式金属-空气电池器件中,能有效减缓固态电解质中水分由于半开放结构向外部扩散而导致电池失去电池效应,从而有效的延长了金属-空气电池的使用寿命。

附图说明

图1为实施例制备的乙烯-乙酸乙烯酯/碳复合纳米纤维的sem照片(标尺为100μm)。

图2为实施例制备的乙烯-乙酸乙烯酯/碳复合纳米纤维的sem照片(标尺为1μm)。

图3为实施例三明治结构的固态金属-空气电池的结构示意图;

其中,1碳布、2乙烯-乙酸乙烯酯/碳复合纳米纤维层、3电解质、4锌电极。

图4为实施例含有碳复合纳米纤维层的器件与不含碳复合纳米纤维层器件的锌-空气电池在2ma·cm-3的单次放电测试示意图。

图5为实施例含有碳复合纳米纤维层的器件与不含碳复合纳米纤维层器件的锌-空气电池在2ma·cm-3的充放电循环测试示意图。

图6为实施例制备的乙烯-乙酸乙烯酯/碳复合纳米纤维的接触角测试照片。

具体实施方式

下面结合实施例和附图对本发明的技术方案进行详细说明,但不是对本发明的限定。

实施例

乙烯-乙酸乙烯酯/碳复合纳米纤维的制备:

称量0.6-1.2g乙烯-乙酸乙烯酯共聚物溶解于20ml二氯甲烷中,再加入0.1-0.5g导电炭黑制备成纺丝液;然后利用静电纺丝仪将纺丝液利用静电纺丝技术于碳布表面进行静电纺丝,成膜后经低温干燥处理,制备得到乙烯-乙酸乙烯酯/碳复合纳米纤维,其sem照片如图1-2所示。

从图1可以看出,采用本发明方法在碳布表面利用静电纺丝技术制备的乙烯-乙酸乙烯酯/碳复合纳米纤维分布均匀,并有着明显的缝隙便于气体的穿过。

从图2中可以看出,纺丝的粗细较为稳定,纤维的直径为375.8nm。并且采用本发明方法,采用静电纺丝技术制备出来的乙烯-乙酸乙烯酯/碳复合纳米纤维的直径分布在300-400nm之间。

参照图3,空气电极的制备:

空气电极是在碳布1上覆盖乙烯-乙酸乙烯酯/碳复合纳米纤维层2后,负载四氧化三钴粉末组成,并将碳布分别在丙酮、酒精、去离子水里,分别清洗30min,然后烘干,取其中一部分于静电纺丝仪中作为样品接收表面,剩余部分作为备用;

电极浆料由四氧化三钴粉末、导电炭黑、去离子水、异丙醇和nafion®全氟树脂溶液制备而成;具体配比为,取9mg四氧化三钴,21mg导电炭黑混合,再溶解在2.4ml去离子水,0.6ml异丙醇,0.3mlnafion®全氟树脂溶液中制得的浆料;将所制得的浆料超声20-30min,用移液枪均匀的涂敷在覆盖有乙烯-乙酸乙烯酯/碳复合纳米纤维层的碳布正极材料的纳米纤维层的一侧,负载量约为0.2-1mg/cm2

参照图3,电解质3的制备:

称量3g平均分子量为195000的聚乙烯醇于90℃水域环境下,溶解于24ml去离子水中,搅拌1-3h,待溶液中无明显固体物质时向溶液中缓慢加入6ml浓度为9mol/l的koh水溶液,并再搅拌20min;随后至于冰箱中冷却,在-18℃下冷冻6h使得电解质交联,形成固态电解质3。

参照图3,锌电极4的准备和器件组装:

锌电极采用厚度为0.25-0.35mm的纯锌片制作而成,将锌片剪切为长为2-3cm,宽为1-2cm的长方体块状,用砂纸将其表面氧化物打磨掉。

将制备好的空气电极剪切为长为2-3cm,宽为1-2cm的长方体块状,随后采用三明治结构的方式按照锌电极4,电解质3和空气电极的顺序组装好,如图3所示。

使用武汉蓝电测试系统ct2001a对采用了乙烯-乙酸乙烯酯/碳复合纳米纤维的锌-空气电池和未采用该纳米纤维层的锌-空气电池进行测试,在2ma·cm-3电流密度下进行单次放电对比,如图4所示,从中可以看出没有加入本发明乙烯-乙酸乙烯酯/碳复合纳米纤维的锌-空气电池中,电池的持续性放电仅5个小时左右。而加入本发明乙烯-乙酸乙烯酯/碳复合纳米纤维的锌-空气电池中,电池的持续性放电达到了17个小时左右,放电时间提升非常明显。

还在2ma·cm-3电流密度下进行的充放电循环测试,如图5所示,从中可以看出没有加入本发明乙烯-乙酸乙烯酯/碳复合纳米纤维的锌-空气电池中,循环时长仅在15个小时左右便失去了电池效应。而加入本发明乙烯-乙酸乙烯酯/碳复合纳米纤维的锌-空气电池中,循环时长已超过45个小时。从这可以看出锌-空气电池的使用寿命因加入本发明乙烯-乙酸乙烯酯/碳复合纳米纤维而提升了三倍以上。

从接触角测试实施例乙烯-乙酸乙烯酯/碳复合纳米纤维的疏水性能,如图6示,在初始接触角为142.3°的情况下,放置6小时后,接触角仅下降到127.7°,说明本发明乙烯-乙酸乙烯酯/碳复合纳米纤维具有较好的疏水性能,并且可以长效保持。

起点商标作为专业知识产权交易平台,可以帮助大家解决很多问题,如果大家想要了解更多知产交易信息请点击 【在线咨询】或添加微信 【19522093243】与客服一对一沟通,为大家解决相关问题。

此文章来源于网络,如有侵权,请联系删除

tips