HI,欢迎来到起点商标网!
24小时服务QQ:2880605093

一种PU合成革用的复合无纺布及其制备方法与流程

2021-01-13 10:01:02|284|起点商标网
本发明属于合成革
技术领域:
,涉及一种pu合成革用的复合无纺布及其制备方法。
背景技术:
:在生产合成革时往往需要进行抗菌、抗静电处理,现有技术中,为了获得抗菌和抗静电的效果,通常分为两种方式,一种是采用熔融纺丝法,且在其中添加功能型助剂(如抗菌剂、抗静电的改性剂)以获得具有抗菌和抗静电效果的纤维;另一种是将纤维在制成织物后,通过对织物进行后处理,赋予织物一定的抗菌和抗静电效果。此外,也有采用熔融纺丝改性和后处理相结合的技术。通过后处理技术赋予织物的抗菌和抗静电效果往往持久性差,目前,研究的方向主要集中在对功能性处理液中功能性助剂的分散、分布性以及功能性助剂与织物的结合力;而通过熔融纺丝改性的方法,可以获得持久性好的抗菌抗静电纤维,但是,这种方法对功能性助剂的选择和工艺的选择要求很高,且功能性助剂的添加量受可纺性的限制,添加过多时往往导致纺丝成型困难等问题。例如,现有技术使用碳黑/碳纤维/碳纳米管等碳元素类型的导电/抗静电助剂作为纤维的抗静电改良剂,并将其分散到纺丝级尼龙6切片中,熔融纺丝时,当抗静电改良剂的添加量达到一定浓度时,抗静电效果良好,但可纺性变差,喷丝板易堵塞,出现断丝、硬丝、大头丝等不良品,影响产品质量;当熔融纺丝时该抗静电改良剂的添加量较少时,可纺性虽然不会变差,但抗静电效果不理想。现有技术还公开了一种抗菌型纺粘无纺布,包括无纺布表层、无纺布夹层、无纺布底层和位于无纺布夹层间隙内的抗菌颗粒,该抗菌颗粒的直径小于无纺布夹层中的纤维间隙,大于无纺布表层和无纺布底层的纤维间隙,这种通过多层无纺布技术,并利用织物的间隙差将抗菌颗粒锁在无纺布内部,在加工方式和抗菌效果的持久性上均有一定的优势。这种方法对多层无纺布的纤维间隙控制的要求较高,对抗菌颗粒的粒径选择性也比较局限,而且这种结构也不适用于pu合成革的制备,因为pu合成革在开纤过程中,海岛纤维制成的无纺布的纤维间隙会变宽;若将海岛纤维制成的无纺布作为夹层时,为有效的锁住抗菌颗粒,需要纤维细密的无纺布作为表层和无纺布底层,在海岛纤维开纤时,因海岛纤维被纤维细密的表层和底层无纺布所包裹,导致开纤过程困难;若将海岛纤维制成的无纺布作为表层或底层,经开纤后纤维的间隙变宽,抗菌颗粒易于在开纤过程中脱除。因此,开发出一种具有优异可纺性和抗菌抗静电性能持久的pu合成革用的复合无纺布及其制备方法具有十分重要的的意义。技术实现要素:为解决现有技术中存在的问题,本发明提供一种pu合成革用的复合无纺布及其制备方法。本发明的目的之一在于提供一种pu合成革用的复合无纺布,包括由海岛纤维构成的无纺布、夹层布和固定在夹层布的微槽中的抗菌抗静电剂;夹层布含有弹性纤维;无纺布与夹层布牢固连接;将该复合无纺布制得pu合成革,pu合成革对金黄色葡萄球菌的抑菌率为90.0%~99.9%,对肺炎克雷伯菌的抑菌率为90.0%~99.9%,表面电阻为1×103~1×106欧姆,pu合成革按照aatcc135-2018方法水洗20次后测试,对金黄色葡萄球菌的抑菌率为90.0%~95%,对肺炎克雷伯菌的抑菌率为90.0%~95%,表面电阻为1×103~1×106欧姆,pu合成革的撕裂强度100~130n。本发明的目的之二在于提供一种pu合成革用的复合无纺布的制备方法,首先在夹层布表面形成微槽,以使抗菌抗静电剂可以被固定在夹层布上,从而使得夹层布的抗菌抗静电性能持久;其次,利用针刺法,将含有抗菌抗静电剂的夹层布和由海岛纤维构成的无纺布复合在一起,形成纤维相互缠结的结构,使由海岛纤维构成的无纺布在合成革的开纤过程中不被破坏,保证了复合无纺布的复合强度;另外,本发明还采用在夹层布中加入氨纶的方式,增加含有抗菌抗静电剂的夹层布和由海岛纤维构成的无纺布的复合强度,以进一步地改善本发明中复合无纺布及其制成的pu合成革的力学性能和抗菌抗静电等综合性能。为达到上述目的,本发明采用的方案如下:一种pu合成革用的复合无纺布,包括无纺布、夹层布和固定在夹层布微槽中的抗菌抗静电剂;夹层布含有弹性纤维;无纺布与夹层布牢固连接;微槽位于夹层布面向无纺布的一侧;无纺布由海岛纤维构成;夹层布含有弹性纤维。作为优选的技术方案:如上所述的一种pu合成革用的复合无纺布,将复合无纺布浸渍在聚氨酯浆料中,并经过凝固、水洗、开纤、片皮、磨皮、染色和水洗烘干制得pu合成革;复合无纺布制得的pu合成革对金黄色葡萄球菌的抑菌率为90.0%~99.9%,对肺炎克雷伯菌的抑菌率为90.0%~99.9%,表面电阻为1×103~1×106欧姆;复合无纺布制得的pu合成革按照aatcc135-2018方法水洗20次后测试,对金黄色葡萄球菌的抑菌率为90.0%~95.0%,对肺炎克雷伯菌的抑菌率为90.0%~95.0%,表面电阻为1×103~1×106欧姆;复合无纺布制得的pu合成革(水洗前)的撕裂强度100~130n。如上所述的一种pu合成革用的复合无纺布,弹性纤维为氨纶。如上所述的一种pu合成革用的复合无纺布,海岛纤维中,海组分的材质为ldpe(低密度聚乙烯pe)(可通过溶剂去除的可融纺聚合物),岛组分的材质为尼龙pa或涤纶pet(可融纺聚合物且不能被溶解海组分的溶剂所去除);岛组分与海组分的体积比为70~80:30~20;海岛纤维中定岛的数量为16~64;优选为37~64;所述岛组分与海组分的体积比小于70:30时,将会导致无纺布与夹层布之间的连接牢固力度不够,所述岛组分与海组分的体积比大于80:20时,将容易并岛,纺丝困难;定岛数量少于16个,将导致后续无纺布与夹层布之间的连接牢固力度不够,特别是影响复合布的复合强度,优选,纤维岛数在37个以上复合强度最佳,过多的岛数使得纤维过细导致可染性变差。在针刺过程中,弹性纤维的存在有利于无纺布与夹层布牢固连接,则制得的复合无纺布在进过开纤处理后,其中的无纺布与夹层布仍然具有紧密的粘合力,且夹层布还因含有氨纶而不易被高强度的针刺机产生的冲击力破坏。如上所述的一种pu合成革用的复合无纺布,夹层布中氨纶的含量为5~15wt%;其余成分为与岛组分材质相同的材质;牢固连接的实现方式为针刺法。当夹层布中氨纶含量小于5wt%时,对提升无纺布与夹层布牢固连接不大;当夹层布中氨纶含量大于15wt%时,弹性过大也不利于无纺布与夹层布牢固连接。如上所述的一种pu合成革用的复合无纺布,夹层布为梭织布;微槽的宽度为200~500μm,深度为200~500μm。梭织布是具有规律的织物结构,这种结构使得在针刺过程制备无纺布时,无纺布与夹层布仅产生纵向(针刺方向)的有规律交叉关系,最大程度的减小了夹层布对无纺布中的海岛纤维在后续开纤过程中的影响。微槽有利于银系抗菌抗静电助剂的附着,微槽宽度<200μm,深度<200μm,银系抗菌抗静电助剂附着的量不够,抗静电性和抗菌性均达不到要求,微槽宽度>500μm,深度>500μm,纤维强度下降厉害,无纺布针刺时,易把夹层布刺断。如上所述的一种pu合成革用的复合无纺布,抗菌抗静电剂的中值粒径d50为5~50μm;抗菌抗静电剂为银粉或者银包铜粉的一种以上。d50<5μm,抗菌抗静电剂在聚丙烯酸接枝改性聚氨酯溶液中不易形成连续相,抗菌抗静电效果达不到要求;d50>50μm,抗菌抗静电剂易在聚丙烯酸接枝改性聚氨酯溶液中沉降,造成银系抗菌抗静电助剂浓度不均匀,抗菌抗静电效果不稳定。本发明还提供一种pu合成革用的复合无纺布的制备方法,用于制备如上所述的pu合成革用的复合无纺布,包括如下步骤:(1)采用脉冲激光束刻蚀夹层布一侧获得单侧具有微槽结构的夹层布;这种方法形成的微槽和等离子体等其他技术相比,微槽的宽度和深度更均匀,有利于助剂均匀分散在微槽内形成有序结构,则抗菌抗静电剂可以延微槽方向有序连续排列,形成导电通路;(2)将单侧具有微槽结构的夹层布浸渍含有抗菌抗静电剂的整理液,烘干交联固化得到含有抗菌抗静电剂夹层布;(3)以含有抗菌抗静电剂夹层布为底层布,以由海岛纤维构成的无纺布为上层布;采用针刺法将含有抗菌抗静电剂夹层布和由海岛纤维构成的无纺布进行复合制得复合无纺布;其中,含有抗菌抗静电剂夹层布中有微槽的一侧面向无纺布。海岛纤维的制备中,牵伸倍数为1~5倍、牵伸温度为50~80℃;优选的,牵伸倍数为3~5倍,牵伸温度为50~70℃,后烘干定型、卷曲、切断、打包,待无纺布制造使用;针刺法可以使海岛纤维与夹层布中的纤维发生缠结,实现无纺布和夹层布之间形成不可剥离的双层结构的复合,这种复合结构,可以保留海岛纤维的结构特点,且在合成革的开纤过程中不受影响,使合成革的力学性能优良,还可以利用夹层布中的抗菌抗静电性能。针刺法中采用的针刺机针密为200~300次/cm2,针深依次为8~10mm,6~8mm,4~6mm,2~4mm,0mm,车速2~3m/min。作为优选的技术方案:如上所述的一种pu合成革用的复合无纺布的制备方法,步骤(1)中,脉冲激光束的能量为100~500mw/cm2;脉冲激光束沿直线轨迹刻蚀;步骤(2)中,整理液的配置过程为:将抗菌抗静电剂加入到聚丙烯酸接枝改性聚氨酯溶液中搅拌均匀;搅拌转速为500~1000转/分钟,搅拌时间为0.5~2小时;浸渍后单侧具有微槽结构的夹层布的带液率为40~60wt%,烘干交联的温度为80~140℃,优选为110~140℃。如上所述的一种pu合成革用的复合无纺布的制备方法,在整理液中,抗菌抗静电剂的质量浓度为0.1~5%,优选为0.1~2.0%;聚丙烯酸接枝改性聚氨酯的质量浓度为20~30%,其中聚丙烯酸的接枝率为5~10%,溶剂为去离子水。抗菌抗静电剂的质量浓度<0.1%,抗菌抗静电助剂附着的量不够,抗静电性和抗菌性均达不到要求;聚丙烯酸接枝改性聚氨酯的质量浓度<20%,且聚丙烯酸的接枝率<5%,则附着性不强,抗菌抗静电效果不持久,若聚丙烯酸接枝改性聚氨酯的质量浓度>30%,且聚丙烯酸的接枝率>10%,纤维强度下降厉害,无纺布针刺时,易把夹层布刺断。本发明的原理是:本发明中的夹层布在与无纺布复合前,已在其表面的微槽结构中固定了抗菌抗静电剂;微槽结构可以使得抗菌抗静电剂稳定地固定在夹层布上,以保证pu合成革的优良且持久的抗菌和抗静电性能。与常规纺丝改性的方法制得的抗菌抗静电纤维相比,该方法不存在可纺性问题,且可以制备高浓度抗菌抗静电助剂含量的纤维;与常规后处理方法改性相比,抗菌抗静电助剂沿凹槽方向有序排列,更易形成导电通路,而常规的织物浸渍,抗菌抗静电助剂在织物表面呈无序分布状态,效果往往较差;本发明中添加的抗菌抗静电剂在后续处理和使用过程中不会析出;更易延纤维方向形成导电通路,相比于后处理方法在达到相同抗静电等级下需要的助剂添加量更少;本发明中的方法可以实现高浓度抗菌抗静电剂的浸渍,相比于共混纺丝法受助剂添加量对可纺性的影响,本发明可以制备抗菌性和抗静电性等级更高、表面电阻更小的合成革。本发明采用双层复合结构,且为了保证复合无纺布的力学性能,本发明在复合无纺布的制备过程中,将梭织型的抗菌抗静电夹层布作为底布,并在其上方通过针刺法将由海岛纤维形成的无纺布复合上去,双层的纤维之间相互缠结,这种双层结构一方面保证了无纺布的力学性能,也保证了其具备稳定持久的抗菌抗静电性。其中,力学性能好是因为:在海岛纤维制成的无纺布在pu含浸凝固后,经有机溶剂去除海组分获得超细纤维的过程称为“开纤”,对于多层无纺布结构而言,在海岛纤维表面覆盖其他纤维层往往会一定程度阻碍后期海岛纤维的开纤过程,影响开纤效率,而本发明采用梭织型的抗菌抗静电夹层布作为底布时,这种有规律的织物结构使得在针刺过程制备复合无纺布时,无纺布与夹层布仅产生针刺方向的纤维缠结,并不会造成后续开纤的阻力,避免过多的缠结所产生其他纤维层对海岛纤维表面的紧密覆盖,导致开纤困难,则保证了超细纤维的强力可以保留。具备稳定持久的抗菌抗静电性是因为:在夹层布中含有弹性纤维,在针刺过程中,有利于夹层布和无纺布之间的牢固连接,进一步增加夹层布和无纺布的复合强度;即便在无纺布中的海岛纤维开纤后,夹层布与脱离海相的超细纤维仍有很好的复合强度;如果在开纤过程中,夹层布与由海岛纤维形成的无纺布脱离,那么在外力作用下,夹层布将无法将作用力分散到无纺布上,因为夹层布经抗菌抗静电改性后力学性能较差,将成为外力作用的破坏点,导致整个pu革性能变差。有益效果(1)本发明的一种pu合成革用的复合无纺布的制备方法,首先在夹层布表面形成微槽,以使抗菌抗静电剂可以被固定在夹层布上,从而使得夹层布的抗菌抗静电性能持久;其次,利用针刺法,将抗菌抗静电夹层布和海岛纤维层复合在一起,形成纤维相互缠结的结构,进一步地,本发明还采用在夹层布中加入氨纶的方式,增加抗菌抗静电夹层布和海岛纤维层的复合强度,以确保pu合成革的力学性能和抗菌抗静电性;使用梭织型的夹层布,由其制得的复合无纺布不影响后续海岛纤维的开纤过程;(2)本发明的一种pu合成革用的复合无纺布,由该复合无纺布制得的pu合成革对金黄色葡萄球菌的抑菌率为90.0%~99.9%,对肺炎克雷伯菌的抑菌率为90.0%~99.9%,表面电阻为1×103~1×106欧姆,且pu合成革按照aatcc135-2018方法水洗20次后测试,对金黄色葡萄球菌的抑菌率为90.0%~95%,对肺炎克雷伯菌的抑菌率为90.0%~95%,表面电阻为1×103~1×106欧姆,pu合成革的撕裂强度100~130n。具体实施方式下面结合具体实施方式,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。本发明采用的测试方法如下:(1)抗菌性测试:采用标准astme2149-13a方法对pu合成革进行测试金黄色葡萄球箘、肺炎克雷伯氏菌的抗菌率测试;(2)抗静电性测试:采用标准gb/t24249-2009的方法测试pu合成革的表面电阻值;(3)抗菌、抗静电持久性测试:采用aatcc135-2018的洗涤方法将pu合成革水洗20次后,按照astme2149-13a和gb/t24249-2009方法分别测试pu合成革的抗菌性和抗静电性;(4)撕裂强度测试标准:采用标准iso3377-1:2011测试pu合成革的撕裂强度。实施例所用的梭织布购自明鑫隆纺织商业化产品;实施例所用的聚丙烯酸接枝改性类聚氨酯购自广州亨缌克新材料有限公司商业化产品;实施例所用的银包铜粉购自广州市银峰金属科技有限公司;实施例所用的银粉购自南宫市锐利合金焊接材料有限公司。以下所有实施例、对比例中,将复合无纺布制成pu合成革的过程为:将该复合无纺布浸渍在聚氨酯浆料中,并经过凝固、水洗(水洗是清洗pu中带入的dmf溶剂)、开纤(开纤是在80℃下,用甲苯萃取出其中的ldpe)、片皮、磨皮、染色和水洗烘干制得pu合成革;制备的pu合成革的厚度均为1.2mm。实施例1一种pu合成革用的复合无纺布的制备方法,包括如下步骤:(1)采用脉冲激光束刻蚀梭织布(70d尼龙(pa6)和40d氨纶以质量比为9:1混纺制得)的一侧获得单侧具有微槽结构的夹层布;其中,脉冲激光束的能量为100mw/cm2;微槽的宽度为200μm,深度为200μm;(2)配置整理液:将抗菌抗静电剂(中值粒径d50为5μm的银包铜粉)加入到聚丙烯酸接枝改性聚氨酯溶液中搅拌均匀得到整理液;其中,搅拌转速为500转/分钟,搅拌时间为1小时;在整理液中,抗菌抗静电剂的质量浓度为0.1%;聚丙烯酸接枝改性聚氨酯溶液的质量浓度为20%,其中,聚丙烯酸的接枝率为5%,溶剂为去离子水;(3)将单侧具有微槽结构的夹层布浸渍含有抗菌抗静电剂的整理液,烘干得到含有抗菌抗静电剂夹层布;其中,浸渍的带液率为40wt%,烘干温度为110℃;(4)采用针刺法将抗菌抗静电剂夹层布和由海岛纤维构成的无纺布进行复合制得复合无纺布;其中,含有抗菌抗静电剂夹层布中有微槽的一侧面向无纺布;海岛纤维中,海组分的材质为ldpe,岛组分的材质为pa6;岛组分与海组分的体积比为70:30;海岛纤维的制备过程中,牵伸倍数为3倍,牵伸温度为50℃,岛组分中纤维的数量为37;针刺法中采用的针刺机针密为200次/cm2,针深依次为8mm,6mm,4mm,2mm,0mm,车速2m/min;制得的复合无纺布包括由海岛纤维构成的无纺布、夹层布和固定在夹层布的微槽中的抗菌抗静电剂;无纺布与夹层布牢固连接;用该复合无纺布制得的pu合成革对金黄色葡萄球菌的抑菌率为90.2%,对肺炎克雷伯菌的抑菌率为90.5%,表面电阻为1×106欧姆,撕裂强度为130n,pu合成革按照aatcc135-2018方法水洗20次后测试,对金黄色葡萄球菌的抑菌率为90%,对肺炎克雷伯菌的抑菌率为90.1%,表面电阻为1×106欧姆。对比例1一种pu合成革用的复合无纺布的制备方法,其步骤与实施例1基本相同,不同之处仅在于步骤(1)中的梭织布为70d尼龙(pa6)/40d氨纶以质量比为9.7:0.3混纺制得;将得到的复合无纺布制成pu合成革;该pu合成革的性能指标见表1。对比例2一种pu合成革用的复合无纺布的制备方法,其步骤与实施例1基本相同,不同之处仅在于步骤(2)中的抗菌抗静电剂为中值粒径d50为2μm的银包铜粉;将得到的复合无纺布制成pu合成革;该pu合成革的性能指标见表1。对比例3一种pu合成革用的复合无纺布的制备方法,其步骤与实施例1基本相同,不同之处仅在于不进行步骤(1),即在步骤(3)中的夹层布不含有微槽;将得到的复合无纺布制成pu合成革;该pu合成革的性能指标见表1。表1性能指标单位实施例1对比例1对比例2对比例3金黄色葡萄球菌的抑菌率%90.290.390.186.4肺炎克雷伯菌的抑菌率%90.590.690.587.9表面电阻欧姆1×1061×1063×1072×108撕裂强度n13085135142水洗后测试的金黄色葡萄球菌的抑菌率%90.09090.178.4水洗后测试的肺炎克雷伯菌的抑菌率%90.190.290.377.9水洗后测试的表面电阻欧姆1×1061×1063×1078×109将对比例1和实施例1进行对比可以看出,对比例1中制得的pu合成革的撕裂强度明显低于实施例1,这是因为对比例1中梭织布的氨纶含量很低,在针刺过程中,氨纶的存在有利于无纺布与夹层布牢固连接,则制得的复合无纺布在进过开纤处理后,其中的无纺布与夹层布仍然具有紧密的粘合力,且夹层布还因含有氨纶而不易被高强度的针刺机产生的冲击力破坏。当夹层布中氨纶含量过小时,对提升无纺布与梭织布层牢固连接的作用不大。将对比例2和实施例1进行对比可以看出,对比例2中制得的pu合成革的表面电阻明显高于实施例1,这是因为在对比例2中,所采用的抗菌抗静电剂的中值粒径太小,将含有抗菌抗静电剂的整理液用于浸渍梭织布时,抗菌抗静电剂的在微槽中的分散分布性差,不易形成连续相,而导致抗菌抗静电效果达不到要求。将对比例3和实施例1进行对比可以看出,对比例3中制得的pu合成革的抗静电、抗菌效果不佳,且抗菌、抗静电持久性略有下降。由于对比例3未对纤维进行开槽处理,其力学性能略高于实施例1,但是抗静电效果不佳是因为抗静电效果往往需要抗静电助剂有规律的排布,形成导电通路才能实现,而对比例3制得的复合无纺布表面不含有微槽结构,其表面富集的抗静电助剂往往是无规律的,不利于形成导电通路,而实施例1中的抗菌抗静电助剂延凹槽方向有序排列,更易形成导电通路,因此,对比例3的表面电阻更高,抗静电效果减弱;抗菌效果减弱的原因是:用相同浓度的整理液整理时,凹槽的存在可以负载相对更多的助剂,则实施例1中的抗菌效果更好;另外,对比例3中抗菌、抗静电持久性略有下降是因为,助剂富集在织物表面,相较于实施例1采用开槽填充的方法而言,其与织物的结合性相对较差,在多次洗涤后表现出轻微的抗菌、抗静电效果的下降。实施例2一种pu合成革用的复合无纺布的制备方法,包括如下步骤:(1)采用脉冲激光束刻蚀梭织布(70d尼龙(pa66)和40d氨纶以质量比为9.5:0.5混纺制得)的一侧获得单侧具有微槽结构的夹层布;其中,脉冲激光束的能量为200mw/cm2;微槽的宽度为250μm,深度为250μm;(2)配置整理液:将抗菌抗静电剂(中值粒径d50为10μm的银粉)加入到聚丙烯酸接枝改性聚氨酯溶液中搅拌均匀得到整理液;其中,搅拌转速为600转/分钟,搅拌时间为1小时;在整理液中,抗菌抗静电剂的质量浓度为0.5%;聚丙烯酸接枝改性聚氨酯溶液的质量浓度为22%,其中,聚丙烯酸的接枝率为6%,溶剂为去离子水;(3)将单侧具有微槽结构的夹层布浸渍含有抗菌抗静电剂的整理液,烘干得到含有抗菌抗静电剂夹层布;其中,浸渍的带液率为45wt%,烘干温度为120℃;(4)采用针刺法将抗菌抗静电剂夹层布和由海岛纤维构成的无纺布进行复合制得复合无纺布;其中,含有抗菌抗静电剂夹层布中有微槽的一侧面向无纺布;海岛纤维中,海组分的材质为ldpe,岛组分的材质为pa66;岛组分与海组分的体积比为80:20;海岛纤维的制备过程中,牵伸倍数为1倍、牵伸温度为60℃,岛组分中纤维的数量为16;针刺法中采用的针刺机针密为220次/cm2,针深依次为8mm,6mm,4mm,2mm,0mm,车速2.5m/min;制得的复合无纺布包括由海岛纤维构成的无纺布、夹层布和固定在夹层布的微槽中的抗菌抗静电剂;无纺布与夹层布牢固连接;用该复合无纺布制得的pu合成革对金黄色葡萄球菌的抑菌率为95%,对肺炎克雷伯菌的抑菌率为94.8%,表面电阻为1×105欧姆,撕裂强度为121n,pu合成革按照aatcc135-2018方法水洗20次后测试,对金黄色葡萄球菌的抑菌率为93.6%,对肺炎克雷伯菌的抑菌率为92.5%,表面电阻为1×105欧姆。实施例3一种pu合成革用的复合无纺布的制备方法,包括如下步骤:(1)采用脉冲激光束刻蚀梭织布(70d尼龙(pa6)和40d氨纶以质量比为9.4:0.6混纺制得)的一侧获得单侧具有微槽结构的夹层布;其中,脉冲激光束的能量为230mw/cm2;微槽的宽度为310μm,深度为360μm;(2)配置整理液:将抗菌抗静电剂(中值粒径d50为25μm的银粉)加入到聚丙烯酸接枝改性聚氨酯溶液中搅拌均匀得到整理液;其中,搅拌转速为750转/分钟,搅拌时间为0.5小时;在整理液中,抗菌抗静电剂的质量浓度为1%;聚丙烯酸接枝改性聚氨酯溶液的质量浓度为24%,其中,聚丙烯酸的接枝率为7%,溶剂为去离子水;(3)将单侧具有微槽结构的夹层布浸渍含有抗菌抗静电剂的整理液,烘干得到含有抗菌抗静电剂夹层布;其中,浸渍的带液率为50wt%,烘干温度为80℃;(4)采用针刺法将抗菌抗静电剂夹层布和由海岛纤维构成的无纺布进行复合制得复合无纺布;其中,含有抗菌抗静电剂夹层布中有微槽的一侧面向无纺布;海岛纤维中,海组分的材质为ldpe,岛组分的材质为pa6;岛组分与海组分的体积比为75:25;海岛纤维的制备过程中,牵伸倍数为5倍、牵伸温度为80℃,岛组分中纤维的数量为55;针刺法中采用的针刺机针密为250次/cm2,针深依次为8mm,6mm,4mm,2mm,0mm,车速2m/min;制得的复合无纺布包括由海岛纤维构成的无纺布、夹层布和固定在夹层布的微槽中的抗菌抗静电剂;无纺布与夹层布牢固连接;用该复合无纺布制得的pu合成革对金黄色葡萄球菌的抑菌率为99.9%,对肺炎克雷伯菌的抑菌率为99.9%,表面电阻为1×103欧姆,撕裂强度为109n,pu合成革按照aatcc135-2018方法水洗20次后测试,对金黄色葡萄球菌的抑菌率为94.9%,对肺炎克雷伯菌的抑菌率为94.8%,表面电阻为1×103欧姆。实施例4一种pu合成革用的复合无纺布的制备方法,包括如下步骤:(1)采用脉冲激光束刻蚀梭织布(70d尼龙(pa46)和40d氨纶以质量比为9.2:0.8混纺制得)的一侧获得单侧具有微槽结构的夹层布;其中,脉冲激光束的能量为350mw/cm2;微槽的宽度为370μm,深度为420μm;(2)配置整理液:将抗菌抗静电剂(中值粒径d50为35μm的银粉)加入到聚丙烯酸接枝改性聚氨酯溶液中搅拌均匀得到整理液;其中,搅拌转速为850转/分钟,搅拌时间为1.5小时;在整理液中,抗菌抗静电剂的质量浓度为1.5%;聚丙烯酸接枝改性聚氨酯溶液的质量浓度为26%,其中,聚丙烯酸的接枝率为8%,溶剂为去离子水;(3)将单侧具有微槽结构的夹层布浸渍含有抗菌抗静电剂的整理液,烘干得到含有抗菌抗静电剂夹层布;其中,浸渍的带液率为55wt%,烘干温度为110℃;(4)采用针刺法将抗菌抗静电剂夹层布和由海岛纤维构成的无纺布进行复合制得复合无纺布;其中,含有抗菌抗静电剂夹层布中有微槽的一侧面向无纺布;海岛纤维中,海组分的材质为ldpe,岛组分的材质为pa46;岛组分与海组分的体积比为70:30;海岛纤维的制备过程中,牵伸倍数为2倍、牵伸温度为55℃,岛组分中纤维的数量为64;针刺法中采用的针刺机针密为230次/cm2,针深依次为8mm,6mm,4mm,2mm,0mm,车速3m/min;制得的复合无纺布包括由海岛纤维构成的无纺布、夹层布和固定在夹层布的微槽中的抗菌抗静电剂;无纺布与夹层布牢固连接;用该复合无纺布制得的pu合成革对金黄色葡萄球菌的抑菌率为96.2%,对肺炎克雷伯菌的抑菌率为97%,表面电阻为1×106欧姆,撕裂强度为101n,pu合成革按照aatcc135-2018方法水洗20次后测试,对金黄色葡萄球菌的抑菌率为95%,对肺炎克雷伯菌的抑菌率为92.2%,表面电阻为1×106欧姆。实施例5一种pu合成革用的复合无纺布的制备方法,包括如下步骤:(1)采用脉冲激光束刻蚀梭织布(70d尼龙(pa66)和40d氨纶以质量比为0.85:0.15混纺制得)的一侧获得单侧具有微槽结构的夹层布;其中,脉冲激光束的能量为450mw/cm2;微槽的宽度为450μm,深度为500μm;(2)配置整理液:将抗菌抗静电剂(银粉与银包铜粉1:1质量混合的混合物,该混合物的中值粒径d50为10μm的)加入到聚丙烯酸接枝改性聚氨酯溶液中搅拌均匀得到整理液;其中,搅拌转速为900转/分钟,搅拌时间为2小时;在整理液中,抗菌抗静电剂的质量浓度为2%;聚丙烯酸接枝改性聚氨酯溶液的质量浓度为28%,其中,聚丙烯酸的接枝率为9%,溶剂为去离子水;(3)将单侧具有微槽结构的夹层布浸渍含有抗菌抗静电剂的整理液,烘干得到含有抗菌抗静电剂夹层布;其中,浸渍的带液率为45wt%,烘干温度为140℃;(4)采用针刺法将抗菌抗静电剂夹层布和由海岛纤维构成的无纺布进行复合制得复合无纺布;其中,含有抗菌抗静电剂夹层布中有微槽的一侧面向无纺布;海岛纤维中,海组分的材质为ldpe,岛组分的材质为pa66;岛组分与海组分的体积比为73:27;海岛纤维的制备过程中,牵伸倍数为4倍、牵伸温度为75℃,岛组分中纤维的数量为45;针刺法中采用的针刺机针密为260次/cm2,针深依次为8mm,6mm,4mm,2mm,0mm,车速3m/min;制得的复合无纺布包括由海岛纤维构成的无纺布、夹层布和固定在夹层布的微槽中的抗菌抗静电剂;无纺布与夹层布牢固连接;用该复合无纺布制得的pu合成革对金黄色葡萄球菌的抑菌率为99.9%,对肺炎克雷伯菌的抑菌率为99.9%,表面电阻为1×103欧姆,撕裂强度为112n,pu合成革按照aatcc135-2018方法水洗20次后测试,对金黄色葡萄球菌的抑菌率为93.6%,对肺炎克雷伯菌的抑菌率为92%,表面电阻为1×103欧姆。实施例6一种pu合成革用的复合无纺布的制备方法,包括如下步骤:(1)采用脉冲激光束刻蚀梭织布(70d尼龙(pa10)和40d氨纶以质量比为9.1:0.9混纺制得)的一侧获得单侧具有微槽结构的夹层布;其中,脉冲激光束的能量为500mw/cm2;微槽的宽度为500μm,深度为250μm;(2)配置整理液:将抗菌抗静电剂(中值粒径d50为50μm的银包铜粉)加入到聚丙烯酸接枝改性聚氨酯溶液中搅拌均匀得到整理液;其中,搅拌转速为1000转/分钟,搅拌时间为1.5小时;在整理液中,抗菌抗静电剂的质量浓度为5%;聚丙烯酸接枝改性聚氨酯溶液的质量浓度为30%,其中,聚丙烯酸的接枝率为10%,溶剂为去离子水;(3)将单侧具有微槽结构的夹层布浸渍含有抗菌抗静电剂的整理液,烘干得到含有抗菌抗静电剂夹层布;其中,浸渍的带液率为60wt%,烘干温度为135℃;(4)采用针刺法将抗菌抗静电剂夹层布和由海岛纤维构成的无纺布进行复合制得复合无纺布;其中,含有抗菌抗静电剂夹层布中有微槽的一侧面向无纺布;海岛纤维中,海组分的材质为ldpe,岛组分的材质为pa10;岛组分与海组分的体积比为80:20;海岛纤维的制备过程中,牵伸倍数为3倍、牵伸温度为60℃,岛组分中纤维的数量为48;针刺法中采用的针刺机针密为280次/cm2,针深依次为8mm,6mm,4mm,2mm,0mm,车速2.5m/min;制得的复合无纺布包括由海岛纤维构成的无纺布、夹层布和固定在夹层布的微槽中的抗菌抗静电剂;无纺布与夹层布牢固连接;用该复合无纺布制得的pu合成革对金黄色葡萄球菌的抑菌率为97.3%,对肺炎克雷伯菌的抑菌率为98.6%,表面电阻为1×104欧姆,撕裂强度为114n,pu合成革按照aatcc135-2018方法水洗20次后测试,对金黄色葡萄球菌的抑菌率为92%,对肺炎克雷伯菌的抑菌率为91.7%,表面电阻为1×104欧姆。当前第1页1 2 3 

起点商标作为专业知识产权交易平台,可以帮助大家解决很多问题,如果大家想要了解更多知产交易信息请点击 【在线咨询】或添加微信 【19522093243】与客服一对一沟通,为大家解决相关问题。

此文章来源于网络,如有侵权,请联系删除

tips