HI,欢迎来到起点商标网!
24小时服务QQ:2880605093

一种运动数据监测方法和装置与流程

2021-01-11 11:01:49|351|起点商标网
一种运动数据监测方法和装置与流程

本申请涉及终端领域,尤其涉及一种运动数据监测方法和装置。



背景技术:

随着通信技术的不断发展,越来越多的电子设备(例如,可穿戴设备(wearabledevice,wd))进入我们的视野。可穿戴设备即可以直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。

可穿戴设备的应用之一是记录用户的运动过程。例如能量手环、计步鞋等可穿戴设备,可以用来记录跑步过程中的移动步数、距离、消耗的卡路里等参数。

但是,针对动作更加多样化的体育运动,例如篮球、排球、跑酷等运动,其包含的动作可以包括走、小步跑、跳跃、侧向移动等,现有的智能穿戴设备无法很好得监测这些动作特征,从而无法提供给用户更好的运动体验。



技术实现要素:

本申请实施例提供一种运动数据监测,能够实时监测用户在动作多样化的体育运动(例如,篮球运动)的运动数据,提升用户的运动体验。

第一方面,本申请实施例提供一种运动数据监测方法,包括:电子设备采集用户的角速度信号和加速度信号;电子设备基于角速度信号获取角速度信号的波形特征,基于加速度信号获取加速度信号的波形特征;电子设备根据角速度信号的波形特征和加速度信号的波形特征确定用户的步态特征,步态特征包括用户的足部离地后到触地前的腾空时间;电子设备根据步态特征确定运动数据,运动数据包括跳跃高度。

基于本申请提供的运动数据监测方法,电子设备可以通过采集用户的角速度信号和加速度信号,并对角速度信号和加速度信号进行处理以获取用户的运动数据。上述用户的角速度信号和加速度信号可以通过六轴传感器采集得到,成本低且无需对多个传感器单元进行时间同步传输处理和数据融合处理,能够实时监测用户在动作多样化的体育运动(例如,篮球运动)的运动数据(如跳跃高度),提升用户的运动体验。

在一种可能的实现方式中,电子设备采集用户的角速度信号和加速度信号包括:电子设备采集用户的足部或腿部的角速度信号和加速度信号。用户的足部包括用户的脚面、脚底等部位,用户的腿部包括用户的脚踝、小腿、膝盖以及大腿等部位。

在一种可能的实现方式中,电子设备根据步态特征确定运动数据包括:电子设备根据腾空时间确定跳跃高度的第一分量;电子设备根据腾空时间内的加速度信号积分确定跳跃高度的第二分量;电子设备根据第一分量和第二分量确定跳跃高度。本申请实施例结合腾空时间和腾空时间内的加速度信号积分来确定跳跃高度,可以提高跳跃高度的精确度。

在一种可能的实现方式中,电子设备根据腾空时间确定跳跃高度的第一分量包括:其中,ht表示第一分量,δt表示腾空时间,g表示重力加速度;电子设备根据腾空时间内的加速度积分确定跳跃高度的第二分量包括:其中,ha表示第二分量,δt表示腾空时间,t0表示腾空时间的初始时刻,k为矫正参数,accz表示用户的加速度在当地水平坐标系z轴方向的信号分量;电子设备根据第一分量和第二分量确定跳跃高度包括:当|ha-ht|<δh时,其中,阈值δh为预设阈值,h为跳跃高度。

在一种可能的实现方式中,电子设备根据角速度信号的波形特征和加速度信号的波形特征确定用户的步态特征包括:电子设备根据角速度信号的波形特征、加速度信号的波形特征和姿态角矩阵确定用户的步态特征,姿态角矩阵是根据角速度信号和加速度信号确定的。姿态角矩阵包括一段时间内电子设备的载体坐标系相对于当地水平坐标系的角度,可以用于表示用户的姿态特征。这样,当用户的动作变化较复杂或动作变化较快时,可以进一步根据姿态角矩阵识别用户的动作,能够更精准地确定运动数据。

在一种可能的实现方式中,该方法还包括:电子设备根据预设条件构造姿态角校正矩阵,预设条件包括预设用户的足部离地前速度为0且垂直方向位移为0,以及用户的足部触地后速度为0且垂直方向位移为0;电子设备根据姿态角校正矩阵对姿态角矩阵进行矫正。这样,可以有效消除陀螺仪传感器和加速度传感器带来的温漂和时漂。

在一种可能的实现方式中,电子设备根据姿态角校正矩阵对姿态角矩阵进行矫正包括:

rc=c*r;

其中,c表示姿态角校正矩阵,r为姿态角矩阵,rc为校正后的姿态角矩阵,α、β、γ分别为当地水平坐标系下的x轴、y轴、z轴方向的旋转角度,vx、vy、vz分别为x轴、y轴、z轴方向上的速度分量,hz为z轴方向上的位移,s为用户的足部离地后到触地前的位移;δt为用户的足部离地后到触地前的时间间隔。

在一种可能的实现方式中,运动数据还包括用户的移动距离、步数、移动速度中的至少一种。运动数据还可以包括用户的心跳、体温和卡路里消耗量等,本申请不做限定。

在一种可能的实现方式中,该方法还包括:电子设备根据触地到离地时间区间内移动速度的局部极小值点进行零速校正,和/或,电子设备根据触地到离地时间区间内垂直方向上位移的局部极小值点进行距离校正。这样,可以有效消除陀螺仪传感器和加速度传感器带来的温漂和时漂。

在一种可能的实现方式中,该方法还包括:电子设备根据角速度信号的波形特征、加速度信号的波形特征和运动数据进行动作分类,动作分类结果包括纵跳、跑跳、侧向移动中的至少一种。这样一来,用户可以根据动作分类结果更清楚得了解自身的运动情况,能够提高用户体验。

在一种可能的实现方式中,该方法还包括:电子设备对运动数据与数据库数据进行模板匹配,输出用户的角色分类和/或人物标签,增强了用户参与体育运动的趣味性,可以提升用户体验。

第二方面,本申请实施例提供一种电子设备,包括:采集单元,用于采集用户的角速度信号和加速度信号;获取单元,用于基于角速度信号获取角速度信号的波形特征,基于加速度信号获取加速度信号的波形特征;确定单元,用于根据角速度信号的波形特征和加速度信号的波形特征确定用户的步态特征,步态特征包括用户的足部离地后到触地前的腾空时间;确定单元,还用于根据步态特征确定运动数据,运动数据包括跳跃高度。

在一种可能的实现方式中,采集单元用于:采集用户的足部或腿部的角速度信号和加速度信号。

在一种可能的实现方式中,确定单元用于:根据腾空时间确定跳跃高度的第一分量;根据腾空时间内的加速度信号积分确定跳跃高度的第二分量;根据第一分量和第二分量确定跳跃高度。

在一种可能的实现方式中,其中,ht表示第一分量,δt表示腾空时间,g表示重力加速度;其中,ha表示第二分量,δt表示腾空时间,t0表示腾空时间的初始时刻,k为矫正参数,accz表示用户的加速度在当地水平坐标系z轴方向的信号分量;当|ha-ht|<δh时,其中,阈值δh为预设阈值,h为跳跃高度。

在一种可能的实现方式中,确定单元用于:根据角速度信号的波形特征、加速度信号的波形特征和姿态角矩阵确定用户的步态特征,姿态角矩阵是根据角速度信号和加速度信号确定的。

在一种可能的实现方式中,确定单元还用于:根据预设条件构造姿态角校正矩阵,预设条件包括预设用户的足部离地前速度为0且垂直方向位移为0,以及用户的足部触地后速度为0且垂直方向位移为0;根据姿态角校正矩阵对姿态角矩阵进行矫正。

在一种可能的实现方式中,rc=c*r;

其中,c表示姿态角校正矩阵,r为姿态角矩阵,rc为校正后的姿态角矩阵,α、β、γ分别为当地水平坐标系下的x轴、y轴、z轴方向的旋转角度,vx、vy、vz分别为x轴、y轴、z轴方向上的速度分量,hz为z轴方向上的位移,s为用户的足部离地后到触地前的位移;δt为用户的足部离地后到触地前的时间间隔。

在一种可能的实现方式中,运动数据还包括用户的移动距离、步数、移动速度中的至少一种。

在一种可能的实现方式中,确定单元还用于:根据触地到离地时间区间内移动速度的局部极小值点进行零速校正,和/或,根据触地到离地时间区间内垂直方向上位移的局部极小值点进行距离校正。

在一种可能的实现方式中,确定单元还用于:根据角速度信号的波形特征、加速度信号的波形特征和运动数据进行动作分类,动作分类结果包括纵跳、跑跳、侧向移动中的至少一种。

在一种可能的实现方式中,确定单元还用于:对运动数据与数据库数据进行模板匹配,输出用户的角色分类和/或人物标签。

第二方面及其各种可能的实现方式的技术效果可以参见第一方面及其各种可能的实现方式的技术效果,此处不再赘述。

第三方面,本申请实施例提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行上述第一方面提供的任意一种方法。

第四方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面提供的任意一种方法。

第五方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述第一方面提供的任意一种方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。

第六方面,本申请实施例还提供了一种装置,该装置可以是处理设备、电子设备或芯片。该装置包括处理器,用于实现上述第一方面提供的任意一种方法。该装置还可以包括存储器,用于存储程序指令和数据,存储器可以是集成在该装置内的存储器,或设置在该装置外的片外存储器。该存储器与该处理器耦合,该处理器可以调用并执行该存储器中存储的程序指令,用于实现上述第一方面提供的任意一种方法。该装置还可以包括通信接口,该通信接口用于该装置与其它设备进行通信。

附图说明

图1为本申请实施例提供的一种电子设备的结构示意图;

图2为本申请实施例提供的一种滚转角、俯仰角、偏航角的示意图;

图3为本申请实施例提供的一种当地水平坐标系的示意图;

图4为本申请实施例提供的一种电子设备的产品形态示意图;

图5为本申请实施例提供的一种适用于运动数据监测方法的流程示意图;

图6为本申请实施例提供的一种为常速走和纵跳的陀螺仪传感器和加速度传感器的波形图的示意图;

图7为本申请实施例提供的一种对速度或z轴位移进行矫正的示意图;

图8为本申请实施例提供的一种基于陀螺仪与加速度传感器各自的波形特征和运动数据,通过分类器对动作种类进行分类识别的流程示意图;

图9为本申请实施例提供的一种纵跳、跑跳和侧向移动的示意图;

图10为本申请实施例提供的一种模板匹配的流程示意图;

图11为本申请实施例提供的又一种电子设备的结构示意图。

具体实施方式

下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请的描述中,除非另有说明,“至少一个”是指一个或多个,“多个”是指两个或多于两个。另外,为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。

本申请实施例提供一种运动数据监测方法,应用于各种体育运动的运动数据监测场景中,例如应用于篮球、排球、羽毛球、跳远、跳高、跨栏、跑酷等运动的运动数据监测场景。运动数据可以包括腾空时间、跳跃高度、跳跃次数、移动距离、步数、移动速度等。

如图1所示,为本申请实施例提供的一种电子设备的结构示意图,该电子设备具体可以为智能脚环100。智能脚环100可以包括处理器110,传感器模块120,通信模块130,电源140,显示屏150,等。其中传感器模块可以包括陀螺仪传感器120a和加速度传感器120b等。

本发明实施例示意的结构并不构成对智能脚环100的限定。可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。

处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(applicationprocessor,ap),调制解调处理器,图形处理器(graphicsprocessingunit,gpu),图像信号处理器(imagesignalprocessor,isp),控制器,存储器,视频编解码器,数字信号处理器(digitalsignalprocessor,dsp),基带处理器,和/或神经网络处理器(neural-networkprocessingunit,npu)等。其中,不同的处理单元可以是独立的器件,也可以是集成在同一个处理器中。

控制器可以是指挥智能脚环100的各个部件按照指令协调工作的决策者。是智能脚环100的神经中枢和指挥中心。控制器根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。

处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器中的存储器为高速缓冲存储器。可以保存处理器刚用过或循环使用的指令或数据。如果处理器需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器的等待时间,因而提高了系统的效率。

陀螺仪传感器120a可以用于确定智能脚环100的运动姿态。在一些实施例中,可以通过陀螺仪传感器确定智能脚环100围绕当地水平坐标系的三个轴(即,x轴,y轴和z轴)的角速度,因此陀螺仪传感器也可以称为三轴陀螺仪。如图2所示,陀螺仪传感器可以分别感应上下倾斜、前后倾斜、左右倾斜的全方位动态信息。智能脚环的姿态角是指载体坐标系与当地水平坐标系之间的夹角,可用滚转(roll)角、俯仰(pitch)角、偏航角(yaw)角三个角表示。陀螺仪传感器可以用于拍摄防抖。示例性的,当按下快门,陀螺仪传感器监测智能脚环100抖动的角度,根据角度计算出镜头模组需要补偿的距离,让镜头通过反向运动抵消智能脚环100的抖动,实现防抖。陀螺仪传感器还可以用于导航,体感游戏场景。

其中,陀螺仪传感器的坐标系是当地水平坐标系。如图3所示,当地水平坐标系的原点o位于载体(即包含陀螺仪传感器的设备,如电子设备100)的质心,x轴沿当地纬线指向东(e),y轴沿当地子午线线指向北(n),z轴垂直于当地水平面,沿当地地理垂线指向上,并与x轴和y轴构成右手直角坐标系。其中,x轴与y轴构成的平面即为当地水平面,y轴与z轴构成的平面即为当地子午面。因此,可以理解的是,陀螺仪传感器的坐标系是:以陀螺仪传感器为原点o,沿当地纬线指向东为x轴,沿当地子午线线指向北为y轴,沿当地地理垂线指向上(即地理垂线的反方向)为z轴。

加速度传感器120b可监测智能脚环100在各个方向上(即,当地水平坐标系的x,y和z轴)加速度的大小,加速度传感器也可以称为三轴加速器。当智能脚环100静止时可监测出重力的大小及方向。还可以用于识别终端姿态,应用于横竖屏切换,计步器等应用。

三轴加速器和三轴陀螺仪合在一起可以称为六轴传感器。

通信模块130可以提供应用在智能脚环100上的包括无线局域网(wirelesslocalareanetworks,wlan)(例如,无线保真(wirelessfidelity,wifi))、蓝牙,全球导航卫星系统(globalnavigationsatellitesystem,gnss),调频(frequencymodulation,fm),近距离无线通信技术(nearfieldcommunication,nfc),红外技术(infrared,ir)等无线通信的解决方案的通信处理模块。通信模块130可以是集成至少一个通信处理模块的一个或多个器件。通信模块经由天线接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器。通信模块130还可以从处理器接收待发送的信号,对其进行调频,放大,经天线转为电磁波辐射出去。

智能脚环100通过gpu,显示屏150,以及应用处理器等实现显示功能。gpu为图像处理的微处理器,连接显示屏和应用处理器。gpu用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个gpu,其执行程序指令以生成或改变显示信息。

显示屏150用于显示图像,视频等。显示屏包括显示面板。显示面板可以采用液晶显示屏(liquidcrystaldisplay,lcd),有机发光二极管(organiclight-emittingdiode,oled),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrixorganiclightemittingdiode的,amoled),miniled,microled,micro-oled,量子点发光二极管(quantumdotlightemittingdiodes,qled)等。

电源140用于为处理器,显示屏,和通信模块等供电。

智能脚环100还可以包括外部存储器、音频模块、摄像头、指示器(例如指示灯)等,本申请不做限定。

如图4所示,其示出本申请实施例提供的一种电子设备100的产品形态示意图。该电子设备具体可以为智能脚环100,该智能脚环100可以包括腕带和表盘。该智能脚环100可以通过腕带佩戴在用户的脚腕上,通过表盘的显示屏显示运动数据、动作分类结果、角色分类和/或人物标签等等。

目前,在监测体育活动的运动数据时,一种比较通用的动作监测方法是基于光学动作捕捉系统监测目标物表面分布的靶标点的空间三维坐标,从而对目标的动作特征进行监测。该方案在部署使用前在目标表面粘贴大量靶标点,且使用前需要对模型进行校正。其基本原理基于计算机视觉成像原理,通过一整套精密而复杂的光学摄像头来实现,由多个高速摄像机从不同角度对目标表面分布的靶标点进行跟踪从而来完成全身的动作特征的监测。这种光学动作捕捉系统安装操作非常繁杂,成本高昂,从而导致其推广困难,普适性较差。

另一种常用的动作监测方法是基于分布式传感器的动作监测方法,该方法是基于目标表面的分布式传感器采集目标各个部位节点的参数,通过时间同步装置将各部位节点的传感器数据进行时间对准,并将各节点传感器采集的参数通过无线协议实时传输给数据处理单元进行数据的融合处理,根据融合后输出的结果进行动作的识别与分类。在使用该监测方法前,需要进行目标表面各节点传感器的预置与时间同步校准。该方案的主要缺点是在运动员身体各个部位粘贴多个位移传感器,成本高,前期工作量大,且要求各传感器单元时间同步传输处理,数据融合处理复杂,数据量大。

为了解决上述问题,本申请提供一种运动数据监测方法,电子设备通过采集用户的角速度信号和加速度信号,并对角速度信号和加速度信号进行处理以获取用户的运动数据。上述用户的角速度信号和加速度信号可以通过六轴传感器采集得到,成本低且无需对多个传感器单元进行时间同步传输处理和数据融合处理,能够实时监测用户在动作多样化的体育运动(例如,篮球运动)的运动数据(如跳跃高度),提升用户的运动体验。

为了便于理解,以下结合附图对本申请实施例提供的运动数据监测方法进行具体介绍。

如图5所示,本申请实施例提供一种运动数据监测方法,包括:

501、电子设备采集用户的角速度信号和加速度信号。

电子设备可以通过加速度传感器获取用户的加速度信号,用户的加速度信号包括该电子设备沿当地水平坐标系的三个坐标轴的加速度的采样值。电子设备可以通过陀螺仪获取用户的角速度信号,用户的角速度信号包括该电子设备沿当地水平坐标系的三个坐标轴的角速度的采样值。

电子设备可以采集用户的足部或腿部的角速度信号和加速度信号。用户的足部包括用户的脚面、脚底等部位,用户的腿部包括用户的脚踝、小腿、膝盖以及大腿等部位。例如,该电子设备可以集成在用户的鞋底、鞋面或鞋垫中,以采集用户的足部的角速度信号和加速度信号。或者,该电子设备可以为智能脚环,佩戴在用户的脚踝或小腿,以采集用户的脚踝或小腿的角速度信号和加速度信号。或者,该电子设备可以放置在运动护膝或绷带中,采集用户的膝盖或大腿的角速度信号和加速度信号。下文以电子设备采集用户的足部的角速度信号和加速度信号为例进行说明。

502、电子设备基于角速度信号获取角速度信号的波形特征,基于加速度信号获取加速度信号的波形特征。

电子设备可以基于陀螺仪传感器采集到的角速度信号与加速度传感器采集到的加速度信号提取出各自的波形特征,波形特征包括波峰数、波谷数、波峰峰值、偏态和峰态等。

503、电子设备根据角速度信号的波形特征和加速度信号的波形特征确定用户的步态特征,用户的步态特征包括用户的足部离地后到触地前的腾空时间。

可以理解的是,人体进行体育运动的过程可以包括多个动作周期。一个动作周期是指一个完整动作(例如,走或跳)所用的时间。一个动作周期可以包括一系列典型姿位的转移,可以将这种典型姿位变化划分成不同的时相(gaitphase/period)。例如,一个动作周期可以包括离地相(也可以称为离地期间)、腾空相(也可以称为腾空期间)和触地相(也可以称为触地期间)。离地相可以是指足跟抬起直至足部离地的过程。腾空相可以是指足部在空中活动的过程。触地相可以是指足跟接触地面之后,重心由足跟向全足转移直至足部全部着地的过程。从离地期间的前期到末期,用户足部的加速度逐渐增加;从触地期间的前期到末期,用户足部的加速度逐渐减少。

以一侧足部的运动过程为例,其在离地期间和触地期间可以认为是静止状态,此时陀螺仪的值接近于零,加速度传感器的值约等于重力加速度。

示例性的,可以基于判别准则判断用户是否为静止状态。

其中,accthr=1g,gyrothr=0.2rad/s;g为重力加速度单位,1g约等于9.8m/s^2。

若确定用户为静止状态,可以根据静止时的加速传感器的三轴数据求解出电子设备(例如,智能脚环)的重力轴矢量若用户为运动状态(非静止状态),可以沿用上一步重力轴(即最近一次根据静止状态计算得到的重力轴)。

而后,基于角速度信号的波形特征与加速度信号的波形特征确定用户的步态特征,从而实现单步分割,求解每一步的腾空时间。单步分割,即分割一段时间内的运动过程的每一个动作周期。例如,加速度传感器的波形图的两个相邻波峰可以表示一个动作周期,该动作周期对应的动作可以是行走的一步,可以是跑步的一步,也可以是一次纵跳等等。用户的步态特征还可以包括离地点速度和触地点速度等。其中,离地点位于离地期间的末期,触地点位于触地期间的前期。

如图6所示,为常速走和纵跳(例如,垂直纵跳)的陀螺仪传感器的波形图(虚线部分)和加速度传感器的波形图(实线部分)的示意图。可以根据陀螺仪传感器的波形特征区分常速走和纵跳,这是由于在常速走时,足部在腾空状态(即离地后到触地前的状态)下会发生姿态变化,因此陀螺仪的波形变化幅度较大(波峰数较多),而在纵跳时,足部在腾空状态下的姿态变化很小,因此陀螺仪的波形变化幅度也相对较小(波峰数较少)。可以根据加速度传感器的波形特征区分离地点(波峰峰值较小)和触地点(波峰峰值较大)。或者,可以根据加速度传感器和陀螺仪传感器的波形区分离地点和触地点。由加速度传感器波形图可知,常速走的离地加速度(离地点对应的加速度)约为4g,g=9.8m/s2,触地加速度(触地点对应的加速度)约为6g,腾空时间约为1420-1330=90单位毫秒,每单位毫秒可以为5ms,即腾空时间为450ms;纵跳的离地加速度约为7g,触地加速度约为14g,腾空时间约为1940-1840=100单位毫秒,即腾空时间为500ms。

504、电子设备根据步态特征确定运动数据。

运动数据可以包括用户在体育运动中的跳跃高度(例如,纵跳高度、跑跳高度)、移动距离、步数、移动速度中的至少一种。运动数据还可以包括用户的心跳、体温和卡路里消耗量等,本申请不做限定。

以运动数据为跳跃高度为例,电子设备可以根据腾空时间确定跳跃高度的第一分量;根据腾空时间内的加速度信号积分确定跳跃高度的第二分量;根据第一分量和第二分量确定跳跃高度。本申请实施例结合腾空时间和腾空时间内的加速度信号积分来确定跳跃高度,可以提高跳跃高度的精确度。

示例性的,电子设备根据腾空时间确定跳跃高度的第一分量包括:

其中,ht表示第一分量,δt表示腾空时间,g表示重力加速度;

电子设备根据加速度积分确定跳跃高度的第二分量包括:

其中,ha表示第二分量,δt表示腾空时间,t0表示腾空时间的初始时刻,k为矫正参数,accz表示所述用户的加速度在当地水平坐标系z轴方向的信号分量;

电子设备根据第一分量和第二分量确定跳跃高度包括:

当|ha-ht|<δh时,其中,阈值δh为预设阈值,h为跳跃高度。

在一些实施例中,电子设备可以根据步态特征和姿态角矩阵确定运动数据,姿态角矩阵是根据角速度信号和加速度信号确定的。姿态角矩阵包括一段时间内电子设备的载体坐标系相对于当地水平坐标系的角度,可以用于表示用户的姿态特征。这样,当用户的动作变化较复杂或动作变化较快时,可以进一步根据姿态角矩阵识别用户的动作,能够更精准地确定运动数据。

可选的,电子设备根据姿态角校正矩阵对姿态角矩阵进行矫正。电子设备可以根据预设条件构造姿态角校正矩阵,预设条件包括预设用户的足部离地前速度为0且垂直方向位移为0,以及用户的足部触地后速度为0且垂直方向位移为0。离地点前可以是指离地期间(离地相)的前期,触地后可以是指触地期间(触地相)的后期。基于线性补偿原则,电子设备可以对足部离地到触地期间内的所有姿态角矩阵进行校正。这样,可以有效消除陀螺仪传感器和加速度传感器带来的温漂和时漂。

示例性的,rc=c*r;

其中,c表示姿态角校正矩阵,r为姿态角矩阵,rc为校正后的姿态角矩阵,α、β、γ分别为x轴、y轴、z轴方向的旋转角度,vx、vy、vz分别为x轴、y轴、z轴方向上的速度分量,hz为z轴方向上的位移,s为用户离地后到触地前的位移;δt为用户离地后到触地前的时间间隔,即腾空时间。

本申请实施例中,姿态角校正矩阵是以方向余弦表示的,姿态角校正矩阵也可以是根据欧拉角或四元值表示,本申请不做限定。

在一些实施例中,可以对足部在运动过程中的触地到离地时间区间内的移动速度和垂直方向上(即z轴)的位移进行零速矫正。触地到离地时间区间可以包括触地相和离地相。如图7中的(a)所示,可以在触地到离地时间区间内搜索速度/z轴位移的局部极小点,该局部极小值点对应时刻为零速度/零位移时刻,如图7中的(b)所示,可以将该局部极小值点对应时刻的移动速度和位移调整为零,减小定位误差。这样,可以有效消除陀螺仪传感器和加速度传感器带来的温漂和时漂。

可以理解的是,以电子设备为智能脚环为例,若用户的一只脚佩戴智能脚环,该智能脚环可以根据一只脚的角速度信号和加速度信号确定用户的运动数据。若用户的双脚都佩戴有智能脚环,可以根据两只脚环中运动数据的时间戳对用户的运动数据进行比对和矫正,以便获取更精确的运动数据。

505、电子设备根据角速度信号的波形特征、加速度信号的波形特征和运动数据进行动作分类,动作分类结果包括纵跳、跑跳、侧向移动中的至少一种。

如图8所示,可以基于陀螺仪与加速度传感器各自的波形特征和运动数据,通过分类器对动作种类进行分类识别。相比仅基于波形特征或仅基于运动数据进行动作分类,将波形特征和运动数据等特征结合起来,可以提高分类的准确性。

其中,波形特征包括波峰数、波谷数、波峰峰值、偏态、峰态等;运动数据包括跳跃高度、移动距离、腾空时间等。分类器可以是逻辑回归分类(logisticregression,lr)器、决策树(decisiontree,dt)分类器、随机森林(randomforest,rf)分类器或梯度提升决策树(gradientboostingdecisiontree,gbdt)分类器等,本申请不做限定。

如图9所示,以篮球运动为例,动作分类结果可以包括垂直纵跳、跑跳、走跑和侧向移动等,还可以包括其他动作,本申请不做限定。这样一来,用户可以根据动作分类结果更清楚得了解自身的运动情况,能够提高用户体验。

506、电子设备对运动数据与数据库数据进行模板匹配,输出用户的角色分类和/或人物标签。

以篮球运动为例,数据库数据可以包括多个用户的数据,用户的数据可以包括用户的运动数据(跳跃高度、腾空时间、移动速度等)、用户参数(例如,身高、体重、臂展、投篮命中率、活跃度)、动作分类结果(纵跳、跑跳和侧向移动)等。数据库数据可以表示为fi(n):其中,i表示数据库的第i个用户的数据;n=1,2...n,n表示用户的数据的特征维数(包括跳跃高度、腾空时间、移动速度、身高、体重、臂展、纵跳和跑跳等)。对数据库fi(n)进行归一化处理可以得到fi(n):归一化处理即消除不同数据指标之间的量纲影响,使各数据指标处于同一数量级。当前用户的运动数据可以表示为gj(n),j表示当前用户输入的第j场/次的数据。可选的,gj(n)还可以包括当前用户的动作分类结果和用户参数,动作分类结果可以包括纵跳、跑跳和侧向移动等,外界输入参数可以包括当前用户的身高、体重、臂展和投篮命中率等参数。

如图10所示,电子设备可以对gj(n)与fi(n)进行模板匹配,输出用户的角色分类和/或人物标签。示例性的,匹配规则可以为相关系数r(i,j)最大原则:

模板匹配后,电子设备可以输出用户的角色分类和/或人物标签。例如,若用户移动速度和纵跳高度值较低、身高较高,可以输出角色分类为中锋,若用户移动速度与活跃度值较大,可以输出角色分类为后卫。再例如,若用户的体重超过80kg,纵跳高度超过70cm,可以输出人物标签大力金刚,若用户纵跳高度超过90cm,可以输出人物标签为弹簧腿。这样一来,增强了用户参与体育运动的趣味性,可以提升用户体验。

基于本申请提供的运动数据监测方法,电子设备可以通过采集用户的角速度信号和加速度信号,并对角速度信号和加速度信号进行处理以获取用户的运动数据。上述用户的角速度信号和加速度信号可以通过六轴传感器采集得到,成本低且无需对多个传感器单元进行时间同步传输处理和数据融合处理,能够实时监测用户在动作多样化的体育运动(例如,篮球运动)的运动数据(如跳跃高度),提升用户的运动体验。

本申请另一些实施例还提供一种监测运动数据的装置,其特征在于,该装置可以应用于包括上述电子设备。该装置用于执行上述方法实施例中手机执行的各个功能或者步骤。

在采用对应各个功能划分各个功能模块的情况下,图11示出了上述实施例中所涉及的电子设备的一种可能的结构示意图,该电子设备用于实现以上各个方法实施例中记载的方法,其具体包括:采集单元1101、获取单元1102和确定单元1103。

其中,采集单元1101,用于支持电子设备执行图5所示的过程501;获取单元1102,用于支持电子设备执行图5所示的过程502;确定单元1103用于支持电子设备执行图5所示的过程503-506。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。

本申请实施例还提供一种计算机存储介质,该计算机存储介质包括计算机指令,当所述计算机指令在上述电子设备上运行时,使得该电子设备执行上述方法实施例中手机执行的各个功能或者步骤。

本申请实施例还提供一种计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行上述方法实施例中手机执行的各个功能或者步骤。

通过以上实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。

在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。

所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。

另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。

所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:u盘、移动硬盘、只读存储器(readonlymemory,rom)、随机存取存储器(randomaccessmemory,ram)、磁碟或者光盘等各种可以存储程序代码的介质。

以上内容,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

起点商标作为专业知识产权交易平台,可以帮助大家解决很多问题,如果大家想要了解更多知产交易信息请点击 【在线咨询】或添加微信 【19522093243】与客服一对一沟通,为大家解决相关问题。

此文章来源于网络,如有侵权,请联系删除

tips