一种撬装式水管式低氮燃气蒸汽锅炉的制作方法
2021-02-25 07:02:04|240|起点商标网
[0001]
本发明属于锅炉设备技术领域,具体涉及一种撬装式水管式低氮燃气蒸汽锅炉。
背景技术:
[0002]
锅炉为热能供应设备,电力、工业以及民用行业均需要通过锅炉供给热量。为提供热量,锅炉一般采用天然气燃料或者煤气燃料对有机介质进行加热,以达到工业、生活所需要的温度。锅炉输出的有机介质可为高温水或者水蒸汽。现有技术中的蒸汽锅炉产生的水蒸汽由于分离高度较低,蒸汽带水量较多,导致蒸汽品质较差。
[0003]
公开号为cn 111156486a的专利公布了一种水管式余热蒸汽锅炉,包括上锅筒,所述上锅筒的两侧均固定套接有对流管束,两侧对流管束的内部分别设有左膜式壁与右膜式壁,所述对流管束远离上锅筒的一端分别固定连接有右下集箱和左下集箱,通过在上锅筒的内部通入废热烟气,并且从进水口处向对流管束中注入水,废热烟气将热量传递给对流管束中的水,对流管束内部的水吸收烟气的热量,形成水蒸气,从上锅筒上方的主汽阀、蒸汽备用阀、副气阀中排出。虽然一种水管式余热蒸汽锅炉能够充分回收废热烟气中的热量,但是对流管束与上锅筒之间的分离高度较低,从上锅筒流出的蒸汽带水量多。此外,公开号为cn 111156486a一种水管式余热蒸汽锅炉还存在膜式水冷壁受热易变形,整体结构不稳定的问题。
技术实现要素:
[0004]
本发明的目的是为了解决现有技术中蒸汽锅炉水产生的蒸汽分离高度低、膜式水冷壁受热易变形、整体结构不稳定的问题,提出了一种撬装式水管式低氮燃气蒸汽锅炉。
[0005]
为实现以上技术目的,本发明采用以下技术方案:
[0006]
一种撬装式水管式低氮燃气蒸汽锅炉,包括壳体与燃烧器,所述壳体内设有锅筒、水冷上集箱以及水冷下集箱;锅筒与水冷上集箱之间连接有蒸汽管,水冷上集箱与水冷下集箱之间连接有左膜式水冷壁与右膜式水冷壁;左膜式水冷壁与右膜式水冷壁之间的区域为炉膛,燃烧器的燃烧端位于炉膛进口;水冷上集箱与水冷下集箱之间还连接有间隔设置的数个水冷壁管,水冷壁管与右膜式水冷壁并排对齐;相邻水冷壁管之间的间隙为炉膛内的烟气出口;左膜式水冷壁、右膜式水冷壁均由多个水冷壁管和多个鳍片并排焊接而成,鳍片连接相邻两水冷壁管;鳍片背火侧设有凸块,不同鳍片的凸块排成数排,同一排的凸块通过第一加强条连接。
[0007]
进一步地,同一鳍片的凸块按鳍片长度方向排列,同一鳍片的凸块通过第二加强条连接。
[0008]
进一步地,所述壳体内还设有第一对流上集箱、第一对流下集箱、第二对流上集箱以及第二对流下集箱;其中,第一对流上集箱、第二对流上集箱均与水冷上集箱平行且位于同一水平面,第一对流下集箱、第二对流下集箱均与水冷下集箱平行且位于同一水平面;第一对流上集箱与锅筒之间、第二对流上集箱与锅筒之间均连接有蒸汽管,第一对流上集箱
与第一对流下集箱之间连接有第一对流管组,第二对流上集箱与第二对流下集箱之间连接有第二对流管组;炉膛内的烟气流出后先后流经第一对流管组、第二对流管组。
[0009]
进一步地,第一对流管组分为低温区与高温区,烟气从高温区流入低温区;低温区的第一对流管组、高温区的第一对流管组均包括第一内对流管与第一外对流管;所述第一对流下集箱的两侧均设有第一内对流管与第一外对流管,位于第一对流下集箱同一侧的第一内对流管与第一外对流管错位布置;位于第一对流下集箱两侧的第一内对流管错位布置;位于第一对流下集箱两侧的第一外对流管错位布置。
[0010]
进一步地,低温区的第一内对流管的外侧与第一外对流管的外侧均设有螺旋鳍片;低温区的烟气整体沿第一对流下集箱的长度方向水平流动,横向冲刷第一内对流管与第一外对流管的螺旋鳍片。
[0011]
进一步地,第二对流管组包括第二内对流管与第二外对流管,第二对流下集箱的两侧均设有第二内对流管与第二外对流管;位于第二对流下集箱同一侧的第二内对流管与第二外对流管错位布置;位于第二对流下集箱两侧的第二内对流管错位布置。
[0012]
进一步地,位于第二对流下集箱同一侧的相邻第二外对流管之间设有烟气隔板,位于同一侧的烟气隔板与第二外对流管连接形成隔板墙;第二对流下集箱两侧的隔板墙之间的区域构成烟气通道;第二内对流管的外侧设有螺旋鳍片;烟气从第一对流管束的低温区进入烟气通道内,整体沿第二对流下集箱的长度方向水平流动,横向冲刷第二内对流管的螺旋鳍片。
[0013]
进一步地,烟气通道的出口与冷凝式节能器连通;壳体顶部设有烟囱,冷凝式节能器与烟囱连通;烟囱与燃烧器之间设有烟气回流管。
[0014]
进一步地,水冷下集箱的两端分别通过连通管与第一对流下集箱的两端对应连接,第一对流下集箱的两端分别通过连通管与第二对流下集箱的两端对应连接。
[0015]
进一步地,位于水冷下集箱与第一对流下集箱之间的一连通管设有进水口;锅筒设有蒸汽出口,蒸汽出口设有汽水分离器。
[0016]
进一步地,水管式低氮燃气蒸汽锅炉整体为撬装式。
[0017]
与现有技术相比,本发明的有益技术效果为:
[0018]
(1)本发明蒸汽分离高度高,从锅筒流出的蒸汽带水量少,蒸汽品质好;相比同容量锅炉水容积小,产汽快;同时膜式水冷壁受热不易变形,整体稳定性能高;
[0019]
(2)炉膛采用膜式水冷壁,密封性能好,炉膛容积大,炉膛温度水平低,减少氮氧化物产生和排放;相比同容量锅炉炉膛容积大,有利于实现低氮燃烧;锅筒不直接受高温火焰辐射,不存在蒸汽锅炉回燃室前管板容易产生管端裂纹的问题;
[0020]
(3)烟气横向冲刷第一对流管束当中带有螺旋鳍片的第一内对流管与第一外对流管、第二对流管束当中带有螺旋鳍片的第二内对流管,结构紧凑,受热面积充足,最大限度回收烟气热量,产生较多的水蒸气;
[0021]
(4)本发明采用整体撬装式结构,运输、安装更方便。
附图说明
[0022]
图1为本实施例一种撬装式水管式低氮燃气蒸汽锅炉壳体正面透视结构图;
[0023]
图2为本实施例一种撬装式水管式低氮燃气蒸汽锅炉壳体侧面透视结构图;
[0024]
图3为本实施例一种撬装式水管式低氮燃气蒸汽锅炉壳体俯视透视结构图;
[0025]
图4为本实施例一种撬装式水管式低氮燃气蒸汽锅炉壳体正面内部结构图;
[0026]
图5为本实施例一种撬装式水管式低氮燃气蒸汽锅炉壳体侧面内部结构图;
[0027]
图6为图5中的a-a截面图;
[0028]
图7为本实施例凸块与第一加强条连接连接局部放大结构图;
[0029]
图8为本实施例凸块与第二加强条连接连接局部放大结构图。
[0030]
图中,1壳体、2燃烧器、3锅筒、4炉膛、5水冷上集箱、6水冷下集箱、7第一对流上集箱、8第一对流下集箱、9第二对流上集箱、10第二对流下集箱、11左膜式水冷壁、12右膜式水冷壁、13凸块、14第一加强条、15第二加强条、16第一内对流管、17第一外对流管、18第二内对流管、19第二外对流管、20螺旋鳍片、21鳍片、22烟气回流管、23进水口、24蒸汽出口、25烟囱、26硅酸铝纤维板。
具体实施方式
[0031]
下面结合具体实施例对本发明进行进一步地描述,但本发明的保护范围并不仅仅限于此。
[0032]
如图1-6所示,本实施例一种撬装式水管式低氮燃气蒸汽锅炉,包括壳体1与燃烧器2。壳体1内从上到下设有锅筒3、水冷上集箱5以及水冷下集箱6,锅筒3与水冷上集箱5之间连接有蒸汽管。水冷上集箱5与水冷下集箱6之间设置有纵置式“d”型布置的膜式水冷壁。膜式水冷壁具体为连接在水冷上集箱5与水冷下集箱6之间的左膜式水冷壁11以及右膜式水冷壁12。左膜式水冷壁11与右膜式水冷壁12之间的区域为炉膛4,燃烧器2的燃烧端位于炉膛4进口。水冷上集箱5与水冷下集箱6之间还连接有间隔设置的数个水冷壁管,水冷壁管与右膜式水冷壁12并排对齐。相邻水冷壁管之间的间隙为炉膛4内的烟气出口。燃料在炉膛4内燃烧,放出热量。水冷下集箱6内的水溶液经左膜式水冷壁11或经右膜式水冷壁12到达水冷上集箱5的过程中吸收燃料放出的热量,水冷上集箱5内为汽水混合物。之后,汽水混合物通过蒸汽管进入锅筒3的过程中,由于高度的增加,汽水混合物发生汽水分离,导致较多的水蒸气进入锅筒3内,而液态的水溶液则在重力的作用下回到水冷上集箱5内。因此,本实施例水循环采用水冷下集箱6、水冷上集箱5以及锅筒3,蒸汽分离高度高,从锅筒3流出的蒸汽带水量少,蒸汽品质好。本实施相比同容量锅炉水容积小,产汽快。同时炉膛4壁采用膜式水冷壁,增加炉膛辐射受热面积,提高锅炉出力和热效率,提高炉膛密封性能,简化保温结构,减轻锅炉重量,提高炉膛烟道刚性,提高锅炉炉膛抗爆能力,利用膜式水冷壁微正压燃烧,减少漏风系数。本实施例采用较大的炉膛尺寸,增加辐射受热面积降低炉膛温度,有利于降低热力型氮氧化物的产生和排放。本实施例相比同容量锅炉,炉膛4容积大,有利于实现低氮燃烧。此外,燃料在炉膛4内燃烧,锅筒3不直接受高温火焰辐射,不存在蒸汽锅炉回燃室前管板容易产生管端裂纹的问题。
[0033]
如图7、图8所示,左膜式水冷壁11、右膜式水冷壁12均由多个水冷壁管和多个鳍片21并排焊接而成,鳍片21连接相邻两水冷壁管。鳍片21背火侧设有凸块13,不同鳍片21的凸块13排成数排,同一排的凸块13通过第一加强条14连接。炉膛4内的燃料在燃烧的过程中,鳍片21温度要比水冷壁管温度高,因此受热变形的概率更大。鳍片21受热变形的结果会出现裂纹,导致整个膜式水冷壁受到破坏。本实施例通过在鳍片21的背火侧表面焊接凸块13,
能够增强鳍片21的结构强度。同时因凸块13体积尺寸较小,占用面积少,凸块13与鳍片21的安装工艺简单。安装过程中,只需要在鳍片21的某一处使凸块13与鳍片21进行焊接即可。左膜式水冷壁11背火侧的每一第一加强条14均连接所有左膜式水冷壁11的鳍片21,使得所有左膜式水冷壁11的鳍片21结合成一个整体,保证左膜式水冷壁11的结构稳定性。右膜式水冷壁12背火侧的每一第一加强条14均连接所有右膜式水冷壁12的鳍片21,使得所有右膜式水冷壁12的鳍片21结合成一个整体,保证右膜式水冷壁12的结构稳定性。同一鳍片21的凸块13按照鳍片21长度方向排列,同一鳍片21的凸块13通过第二加强条15连接。具体可使凸块13设有通孔,第二加强条15贯穿通孔以连接数个凸块13。左膜式水冷壁11的背火侧、右膜式水冷壁12背火侧均设置有第一加强条14与第二加强条15交错构成的网状结构,增强鳍片21结构强度的同时,还能增强膜式水冷壁的整体稳定性。
[0034]
如图5、图6所示,壳体1内还设有第一对流上集箱7、第一对流下集箱8、第二对流上集箱9以及第二对流下集箱10。其中,第一对流上集箱7、第二对流上集箱9均与水冷上集箱5平行且位于同一水平面,第一对流下集箱8、第二对流下集箱10均与水冷下集箱6平行且位于同一水平面。第一对流上集箱7与锅筒3之间、第二对流上集箱9与锅筒3之间均连接有蒸汽管,第一对流上集箱7与第一对流下集箱8之间连接有第一对流管组,第二对流上集箱9与第二对流下集箱10之间连接有第二对流管组。水冷上集箱5、水冷下集箱6、水冷上集箱5与水冷下集箱6之间的膜式水冷壁整体为第一模块。第一对流上集箱7、第一对流下集箱8、第一对流上集箱7与第一对流下集箱8之间的第一对流管组整体为第二模块。第二对流上集箱9、第二对流下集箱10、第二对流上集箱9与第二对流下集箱10之间的第二对流管束组整体为第三模块。锅筒3为第四模块。本实施例将模块一、模块二、模块三以及模块四采用模块化组装,实现制造维修更换增容便捷化。各蒸汽管分别与各自对应的水冷上集箱5、第一对流上集箱7、第二对流上集箱9采用外部焊接。本实施例采用模块化组装结构,为采用外部焊接创造了有利条件,可大大减小锅炉外形尺寸和钢耗量。
[0035]
炉膛4内的烟气流出后先后流经第一对流管组、第二对流管组。第一对流下集箱8中的水溶液经第一对流管组到达第一对流上集箱7的过程中吸收烟气中的热量,第一对流上集箱7内为汽水混合物。之后汽水混合物通过蒸汽管进入锅筒3的过程中,由于高度的增加,汽水混合物发生汽水分离,导致较多的水蒸气进入锅筒3中,而液态的水溶液则在重力的作用下回到第一对流上集箱7中。第二对流下集箱10的水溶液的变化状态同第一对流下集箱8的水溶液。因此,本实施例水循环通过采用第一对流上集箱7、第一对流下集箱8、第二对流上集箱9以及第二对流下集箱10,能最大限度回收排放烟气中的热量以及提高蒸汽的生成总量与品质。
[0036]
第一对流管组分为低温区与高温区,烟气从高温区流入低温区。低温区的第一对流管组与高温区的第一对流管组均包括第一内对流管16、第一外对流管17。第一对流下集箱8的两侧均设有第一内对流管16与第一外对流管17,位于第一对流下集箱8同一侧的第一内对流管16与第一外对流管17错位布置。位于第一对流下集箱8两侧的第一内对流管16错位布置。位于第一对流下集箱8两侧的第一外对流管17错位布置。第一外对流管17、第一内对流管16与第一对流上集箱7的连接方式同与第一对流下集箱8的连接方式。低温区的第一内对流管16的外侧与第一外对流管17的外侧均设有螺旋鳍片20,具体为将螺旋鳍片20套结在第一内对流管16外壁并与第一内对流管16外壁焊接连接,将螺旋鳍片20套结在第一外对
流管17外壁并与第一外对流管17外壁焊接连接。第一内对流管16与第一外对流管17均为弧形结构,第一外对流管17的弧形半径大于第一内对流管16的圆弧半径。位于第一内对流管16中间段的管道与位于第一外对流管17中间段的管道均为竖直管,螺旋鳍片20套结在竖直部位。高温区靠近炉膛4烟气出口,低温区向远离炉膛4烟气出口的方向延伸。低温区的烟气整体沿第一对流下集箱8的长度方向水平流动,横向冲刷第一内对流管16与第一外对流管17的螺旋鳍片20,螺旋鳍片20能够增大烟气在流通的过程中与第一内对流管16、第一外对流管17的接触面积,增强换热效果,最大限度回收烟气热量,产生较多的水蒸气。此外,烟气横向冲刷螺旋鳍片20,保证换热效果最强。因此,本实施例的对流管束采用螺旋鳍片管,结构紧凑,扩展烟气侧受热面积,降低排烟温度,提高锅炉热效率,并使锅炉外形尺寸进一步减小。
[0037]
第二对流管组包括第二内对流管18与第二外对流管19,第二对流上集箱98的两侧均设有第二内对流管18与第二外对流管19。位于第二对流下集箱10同一侧的第二内对流管18与第二外对流管19错位布置。位于第二对流下集箱10两侧的第二内对流管18错位布置。第二内对流管18、第二外对流管19与第二对流上集箱9的连接方式同与第二对流下集箱10的连接方式。位于第二对流下集箱10同一侧的相邻第二外对流管19之间设有烟气隔板,位于同一侧的烟气隔板与第二外对流管19连接形成隔板墙。第二对流下集箱10两侧的隔板墙之间的区域构成烟气通道。第二内对流管18的外侧设有螺旋鳍片20,具体为将螺旋鳍片20套结在第二内对流管18外壁并与第二内对流管18外壁焊接连接。第二内对流管18与第二外对流管19均为弧形结构,第二外对流管19的弧形半径大于第二内对流管18的圆弧半径。位于第二内对流管18中间段的管道与位于第二外对流管19中间段的管道均为竖直管。螺旋鳍片20套结在第二内对流管18的竖直部位。
[0038]
烟气隔板设有烟气进口,烟气从烟气进口进入烟气通道内,烟气进口靠近第一对流管组中低温区烟气流通的尾端。烟气从第一对流管组的低温区通过烟气进口进入烟气通道内,整体沿第二对流下集箱10的长度方向水平流动,横向冲刷第二内对流管18的螺旋鳍片20,螺旋鳍片20能够增大烟气在流通的过程中与第二内对流管18接触面积,增强换热效果,最大限度回收烟气热量,产生较多的水蒸气。此外,烟气横向冲冲刷螺旋鳍片20,保证换热效果最强。
[0039]
烟气从在炉膛4内流通到从炉膛4烟气出口流出,整体水平流动方向偏转90
°
。烟气由炉膛4烟气出口进入第一对流管组后,烟气整体水平流动方向发偏转90
°
。烟气从第一对流管组进入第二对流管组的烟气通道后,烟气整体水平流动方向发生偏转180
°
。不断调整烟气流动方向,便于烟气内含有的杂质沉降,同时增长烟气流通长度,提高锅炉换热效率。烟气通道的出口与冷凝式节能器连通,通过冷凝式节能器降低烟气温度,排烟温度低于60℃,对低位发热值而言,热效率可达到101%,减少烟气中有害物质的排放。冷凝式节能器采用循环泵加大水量连续打循环方式,提高管内水速提高换热系数,降低排烟温度,提高热效率。
[0040]
壳体1顶部设有烟囱25,冷凝式节能器与烟囱25连通,烟囱25与燃烧器2之间设有烟气回流管22。被冷凝式节能器降低温度的烟气,一部分排放,另一部分可回到燃烧器2内与燃气混合,通过烟气回流,降低炉膛燃烧温度、氧气浓度和分压,使热力型nox生成减少,达到低排放的要求。烟气回流时,选取经济合理的烟气流速,减小阻力,降低鼓风机或燃烧
器风机的运行电耗。为进一步实现低氮排放的效果,本实施例的燃烧器2可采用低氮燃烧器。根据低氮排放要求合理选用进口名牌低氮燃烧器,结合大尺寸的炉膛,满足火焰直径和长度的需要,进一步优化燃烧器与炉膛尺寸的匹配性。
[0041]
水冷下集箱6的两端分别通过连通管与第一对流下集箱8的两端对应连接,第一对流下集箱8的两端分别通过连通管与第二对流下集箱10的两端对应连接。本实施例水冷上集箱5、水冷下集箱6、第一对流上集箱7、第一对流下集箱8、第二对流上集箱9以及第二对流下集箱10长度均相同,并且两端均对齐。位于水冷下集箱6与第一对流下集箱8之间的一连通管设有进水口23,锅筒3设有蒸汽出口24。锅炉内循环水介质从连通管的进水口23进入,产生的蒸汽从蒸汽出口24流出。为进一步减少蒸汽带水量,蒸汽出口24设有汽水分离器。锅筒3体积小,因此锅炉水容积小,启动升温块,几分钟可出蒸汽,同时夜间停炉后散热损失小。壳体1壁面的保温材料为硅酸铝纤维板26,并采用错缝叠铺,减少热量损失,同时减少炉墙蓄热,热惯性好,启动升温快。本实施例采用先进的自动控制系统,具体为plc与触摸屏相结合,操作简单、可靠,实现自动点火、负荷自动调节,启停检漏全自动智能控制。本实施例水管式低氮燃气蒸汽锅炉整体采用撬装式,将相关的节能器、给水泵、管路、阀门仪表、控制装置等均安装到位后整装出厂,运输安装更方便,具有机构紧凑、安装使用方便、外形美观、节省基建投资、节省安装费用等优点。
[0042]
以上对本发明的实施例进行了详细说明,对本领域的普通技术人员而言,依据本发明提供的思想,在具体实施方式上会有改变之处,而这些改变也应视为本发明的保护范围。
起点商标作为专业知识产权交易平台,可以帮助大家解决很多问题,如果大家想要了解更多知产交易信息请点击 【在线咨询】或添加微信 【19522093243】与客服一对一沟通,为大家解决相关问题。
此文章来源于网络,如有侵权,请联系删除
热门咨询
tips