HI,欢迎来到起点商标网!
24小时服务QQ:2880605093

基于液态压缩空气储能的火电机组调峰调频系统及方法与流程

2021-02-25 07:02:17|369|起点商标网
基于液态压缩空气储能的火电机组调峰调频系统及方法与流程
基于液态压缩空气储能的火电机组调峰调频系统及方法
【技术领域】
[0001]
本发明属于储能方面的动力传动技术领域,涉及一种基于液态压缩空气储能的火电机组调峰调频系统及方法。


背景技术:

[0002]
截止2019年底,光伏、风电累计装机容量分别达到2.05、2.1亿千瓦,占总装机容量(20.1亿千瓦)的10.2%和10.4%;年总发电量分别达到2243、4057亿千瓦时,占年总发电量(73253亿千瓦)的3%和5.5%。新能源电力未来将大幅快速发展,要求火电机组在当前基础上进一步挖掘调峰潜力。具备波动性及间歇性特点的可再生能源电能大规模并网,对电网削峰填谷、安全稳定运行水平提出了更高要求。建设大规模储能装置,提升电力系统运行灵活性及安全性,是解决新能源高比例消纳问题的有效途径。
[0003]
电力系统运行灵活性的主要性能指标有二:负荷调节范围和调节速率,亦即降低机组最小技术出力和提高机组负荷响应速率。
[0004]
目前,储能技术主要有抽水蓄能、压缩空气储能、电化学储能。抽水蓄能技术成熟,效率较高,但存在地理位置限制等问题,难以大规模推广;电化学电池储能技术响应快、体积小、建设周期短,但存在整体寿命短、工业污染大等缺点。液态压缩空气储能技术具有寿命长、环境污染小、运行维护费用低等特点,具备规模化推广应用潜力。
[0005]
现有压缩空气储能发电系统均应用于电网侧或用户侧,并设置以导热油或水为热载体,将储能压缩过程的压缩热用于释能膨胀发电过程的膨胀吸热,一定程度提升了系统整体电-电转化效率。但仍存在压缩机放热和膨胀机吸热之间的强耦合关系,限制了系统整体的电-电转化效率提升和关键设备诸如压缩机和膨胀发电机的制造工艺及成本:对于空气膨胀发电机来讲,其内效率与入口空气温度成正比关系,要求空气压缩过程提供高温热量;对于空气压缩机组来讲,最高效的应为等温压缩。综合来讲,压缩空气储能发电系统的压缩机和膨胀机高效运行难以兼顾。


技术实现要素:

[0006]
本发明的目的在于解决现有技术中的问题,提供一种基于液态压缩空气储能的火电机组调峰调频系统及方法,将火电机组汽水循环的某处局部能量时空转移存储,无论在压缩储能,还是在膨胀释能环节,均可实现火电机组调峰调频能力的快速提升。
[0007]
为达到上述目的,本发明采用以下技术方案予以实现:
[0008]
基于液态压缩空气储能的火电机组调峰调频系统,包括:
[0009]
燃煤发电机组,所述燃煤发电机组的低压缸排汽口依次连接第一凝汽器、凝结水泵、低压加热器组、给水泵组以及高压加热器组;
[0010]
液态压缩空气储能系统,所述液态压缩空气储能系统包括空气压缩机,空气压缩机的出口依次连接压缩热冷却器和预冷器,预冷器的出口依次连接制冷膨胀机和气液分离器,气液分离器的气态空气出口与预冷器相连,液态空气出口连接液化空气存储装置;
[0011]
液态压缩空气释能系统,所述液态压缩空气释能系统包括变频液化空气升压泵,变频液化空气升压泵的入口与液化空气存储装置相连,出口依次连接空气加热器以及空气膨胀发电机释能发电,做功后的空气排入大气。
[0012]
上述系统进一步的改进在于:
[0013]
所述燃煤发电机组包括锅炉,所述锅炉的新蒸汽出口连接高压缸的进汽口,高压缸的排汽口与锅炉的再热器入口相连,锅炉的再热器出口连接中压缸的进汽口,中压缸的排汽口连接低压缸的进汽口相连;高压加热器组的出口与锅炉相连;高压缸、中压缸和低压缸同轴连接,共同驱动发电机发电。
[0014]
所述中压缸的排汽管路上,通过中排抽汽阀门组引出部分排汽;中压缸的进汽管路上,通过热再抽汽阀门组引出部分热再蒸汽;中排抽汽阀门组和热再抽汽阀门组引出的蒸汽汇合后作为驱动蒸汽输出至纯凝式汽轮机,纯凝式汽轮机的排汽输出至第二凝汽器与闭式循环冷却水系统的冷却水进行换热,换热后的凝结水回流至第一凝汽器中;纯凝式汽轮机通过第一离合齿轮箱与空气压缩机组相连,用于驱动空气压缩机组工作。
[0015]
所述第二凝汽器上连接有水环真空泵,用于将第二凝汽器内的不凝结气体抽出。
[0016]
所述闭式循环冷却水系统包括冷却水塔,所述冷却水塔的出口通过循环水泵将冷却水分别输送至第一凝汽器和第二凝汽器进行换热,换热后均回流至冷却水塔完成冷却水循环。
[0017]
所述空气压缩机组上通过第二离合齿轮箱与电动机的一个转轴相连,空气膨胀发电机通过第三离合齿轮箱与电动机的另一个转轴相连。
[0018]
所述低压加热器组入口处的部分水引出至压缩热冷却器与来自空气压缩机组的压缩空气进行换热,换热后输出至低压加热器组出口处的管道上。
[0019]
所述高压加热器组空气加热器的入口处通过第一阀门组引出部分给水,出口处通过第二阀门组引出部分给水,第一阀门组和第二阀门组引出的给水汇合后输出至空气加热器中与液态空气进行换热,换热后输出至低压加热器组入口处。
[0020]
所述变频液化空气升压泵与空气加热器之间还设置有蓄冷装置,蓄冷装置与预冷器相连,为预冷器提供冷源。
[0021]
一种基于液态压缩空气储能的火电机组调峰调频方法,包括以下步骤:
[0022]
i.调峰模式:
[0023]
压缩储能环节:电网未要求深度调峰时,关闭热再抽汽阀门组,开启中排抽汽阀门组,中压缸排汽进入纯凝式汽轮机做功;电网要求火电机组深度调峰时,逐步关小中排抽汽阀门组直至关闭,逐步开启热再抽汽阀门组,以高品质蒸汽驱动纯凝式汽轮机,旁路部分进入中压缸做功发电的蒸汽,降低火电机组发电机功率,达到了深度调峰的目的;
[0024]
膨胀释能环节:电网未要求深度调峰时,液化空气存储装置出口的液化空气经变频液化空气升压泵加压,将液态空气低温冷能存储于蓄冷装置后,以低于环境温度的气态形式进入空气加热器,升温后进入空气膨胀发电机做功发电,并入火电机组发电机出线端;电网要求深度调峰时,逐步关小变频液化空气升压泵的运行频率以降低释能系统的输出功率,直至释能环节停止运行;
[0025]
ii.调频模式:
[0026]
a.增加总上网功率
[0027]
压缩储能环节:

关小空气压缩机组的纯凝式汽轮机进汽的中排抽汽阀门组或热再抽汽阀门组,降低汽轮机抽汽,提升火电机组发电功率;

开大压缩热冷却器的凝结水阀门开度,降低流经低压加热器组的凝结水流量,减小低压缸回热系统抽汽流量,提升火电机组发电功率;
[0028]
膨胀释能环节:

开大变频液化空气升压泵的运行频率以提升释能系统的输出功率;

开大高压加热器组入口的第一阀门组,同时关小高压加热器组出口的第二阀门组直至关闭,降低流经高压加热器组的给水流量,减小高压缸和中压缸的回热系统抽汽流量,提升火电机组发电功率;
[0029]
b.减小总上网功率
[0030]
压缩储能环节:

开大空气压缩机组的纯凝式汽轮机进汽的中排抽汽阀门组或热再抽汽阀门组,增加汽轮机抽汽,减小火电机组发电功率;

全开空气压缩机组的纯凝式汽轮机进汽的热再抽汽阀门组,同时关小直至全关中排抽汽阀门组,由高品质蒸汽替代低品质蒸汽,减小火电机组发电功率;

关小压缩热冷却器的凝结水阀门开度直至关闭,提高流经低压加热器组的凝结水流量,增大低压缸回热系统抽汽流量,降低火电机组发电功率;
[0031]
膨胀释能环节:

调小变频液化空气升压泵的运行频率以降低释能系统的输出功率;

关小高压加热器组入口的第一阀门组直至关闭,同时开大直至全开高压加热器组出口的第二阀门组,提高流经高压加热器组的给水流量,增大高压缸和中压缸的回热系统抽汽流量,降低火电机组发电功率。
[0032]
与现有技术相比,本发明具有以下有益效果:
[0033]
本发明液态压缩空气储能系统与火电机组汽水热力循环多重耦合,压缩机采用火电机组中压缸进汽和排汽作为热源的纯凝式汽轮机驱动,储能压缩过程的热量用于加热凝结水从而排挤低压缸回热抽汽,释能膨胀过程的吸热由高温给水提供。本发明提出的调峰、调频能力提升的系统运行方式,可实现火电机组汽水热力循环的部分能量实现时空转移,有利于提升火电机组参与电网的调峰和调频能力。本发明适用于所有火电机组,具备大规模推广的普适性条件。
【附图说明】
[0034]
为了更清楚的说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
[0035]
图1为本发明的系统示意图。
[0036]
其中,1-锅炉,2-高压缸,3-中压缸,4-低压缸,5-发电机,6-凝汽器,7-循环水泵,8-冷却水塔,9-凝结水泵,10-低压加热器组,11-给水泵组,12-高压加热器组,13-纯凝式汽轮机,14-第二凝汽器,15-水环真空泵,16-中排抽汽阀门组,17-热再抽汽阀门组,18-离合齿轮箱,19-空气压缩机组,20-电动机,21-压缩热冷却器,22-预冷器,23-制冷膨胀机,24-气液分离器,25-液化空气存储装置,26-变频液化空气升压泵,27-蓄冷装置,28-空气加热器,29-空气膨胀发电机,30~31阀门组。
【具体实施方式】
[0037]
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。
[0038]
因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
[0039]
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
[0040]
在本发明实施例的描述中,需要说明的是,若出现术语“上”、“下”、“水平”、“内”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
[0041]
此外,若出现术语“水平”,并不表示要求部件绝对水平,而是可以稍微倾斜。如“水平”仅仅是指其方向相对“竖直”而言更加水平,并不是表示该结构一定要完全水平,而是可以稍微倾斜。
[0042]
在本发明实施例的描述中,还需要说明的是,除非另有明确的规定和限定,若出现术语“设置”、“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
[0043]
下面结合附图对本发明做进一步详细描述:
[0044]
参见图1,本发明基于液态压缩空气储能的火电机组调峰调频系统,包括燃煤发电机组、液态压缩空气储能系统和液态压缩空气释能系统;
[0045]
燃煤发电机组的低压缸4排汽口依次连接第一凝汽器6、凝结水泵9、低压加热器组10、给水泵组11以及高压加热器组12;液态压缩空气储能系统包括空气压缩机19,空气压缩机19的出口依次连接压缩热冷却器21和预冷器22,预冷器22的出口依次连接制冷膨胀机23和气液分离器24,气液分离器24的气态空气出口与预冷器22相连,液态空气出口连接液化空气存储装置25;液态压缩空气释能系统包括变频液化空气升压泵26,变频液化空气升压泵26的入口与液化空气存储装置25相连,出口依次连接蓄冷器27、空气加热器28以及空气膨胀发电机29释能发电,做功后的空气排入大气。
[0046]
燃煤发电机组包括锅炉1,锅炉1的新蒸汽出口连接高压缸2的进汽口,高压缸2的排汽口与锅炉1的再热器入口相连,锅炉1的再热器出口连接中压缸3的进汽口,中压缸3的排汽口连接低压缸4的进汽口相连,低压缸4的排汽依次连接第一凝汽器6、凝结水泵9、低压加热器组10、给水泵组11和高压加热器组12;高压加热器组12的出口与锅炉1相连;高压缸2、中压缸3和低压缸4同轴连接,共同驱动发电机5发电。
[0047]
中压缸3的排汽管路上,通过中排抽汽阀门组16引出部分排汽;中压缸3的进汽管路上,通过热再抽汽阀门组17引出部分热再蒸汽;中排抽汽阀门组16和热再抽汽阀门组17引出的蒸汽汇合后作为驱动蒸汽输出至纯凝式汽轮机13,纯凝式汽轮机13的排汽输出至第二凝汽器14与闭式循环冷却水系统的冷却水进行换热,换热后的凝结水回流至第一凝汽器6中;纯凝式汽轮机13通过第一离合齿轮箱18与空气压缩机组19相连,用于驱动空气压缩机组19工作。第二凝汽器14上连接有水环真空泵15,用于将第二凝汽器14内的不凝结气体抽出。
[0048]
闭式循环冷却水系统包括冷却水塔8,冷却水塔8的出口通过循环水泵7将冷却水分别输送至第一凝汽器6和第二凝汽器14进行换热,换热后均回流至冷却水塔8完成冷却水循环。
[0049]
空气压缩机组19上通过第二离合齿轮箱32与电动机20的一个转轴相连,空气膨胀发电机29通过第三离合齿轮箱33与电动机20的另一个转轴相连。低压加热器组10入口处的部分水引出至压缩热冷却器21与来自空气压缩机组19的压缩空气进行换热,换热后输出至低压加热器组10出口处的管道上。高压加热器组空气加热器28的入口处通过第一阀门组30引出部分给水,出口处通过第二阀门组31引出部分给水,第一阀门组30和第二阀门组31引出的给水汇合后输出至空气加热器28中与液态空气进行换热,换热后输出至低压加热器组10入口处。变频液化空气升压泵26与空气加热器28之间还设置有蓄冷装置27,蓄冷装置27与预冷器22相连,为预冷器22提供冷源。
[0050]
本发明的原理:
[0051]
锅炉1出口新蒸汽依次经过汽轮机高压缸2做功后返回锅炉1再热器二次提温后,再进入中压缸3和低压缸4做功驱动发电机5发电,低压缸4排汽进入第一凝汽器6冷凝,冷源由循环水泵7和冷却水塔8组成闭式循环冷却水系统提供。凝汽器出口的凝结水依次流经凝结水泵9、低压加热器组10、给水泵组11和高压加热器组12后进入锅炉1吸热,完成燃煤发电机组典型汽水热力系统循环。
[0052]
液态压缩空气的储能过程:空气经空气压缩机组19加压后进入压缩热冷却器21和预冷器22梯级降温后进入制冷膨胀机23实现深度降温,在气液分离器24实现空气的液态和气态分离,液态进入存储装置25,以低温液态的形式存储。预冷器冷源由气液分离器24的气态空气以及释能环节液化空气存储装置25出口的蓄冷装置27提供。
[0053]
系统的释能发电过程:液化空气存储装置25出口的液化空气经变频液化空气升压泵26加压,将液态空气低温冷能存储于蓄冷装置27后,以略低于环境温度的气态形式进入空气加热器28升温后进入空气膨胀发电机29做功发电,并入火电机组发电机出线端。
[0054]
液态压缩空气储能系统与火电机组汽水热力循环的耦合点:
[0055]
1)压缩机驱动方式。压缩机采用电动机20和纯凝式汽轮机13双动力同轴驱动,通过离合齿轮箱18实现连接及转速调整。纯凝式汽轮机13配置双路汽源,分别为汽轮机中压缸3进汽和排汽,可独立取汽,也可共同取汽。纯凝式汽轮机13排汽进入增设的第二凝汽器14冷凝后进入第一凝汽器6,以维持汽水质量平衡。第二凝汽器14冷却水取自循环水泵7的出口,吸热后的高温水并入第一凝汽器6的出口循环水母管后进入冷却水塔8。设置了水环真空泵15,将第二凝汽器14内的不凝结气体抽出以维持高效换热。
[0056]
2)压缩放热用于加热凝结水。从凝结水泵9出口引部分凝结水至压缩热冷却器21,
吸热后回至低压加热器组10出口。
[0057]
3)膨胀吸热由高温给水提供。从高压加热器组12出口和入口分别引部分给水至空气加热器28,放热后回至低压加热器组10入口。
[0058]
火电机组设置液态压缩空气储能系统后,或压缩储能环节运行,或膨胀释能环节运行,不存在两者都运行或都不运行的条件。本发明基于液态压缩空气储能的火电机组调峰调频方法,包括以下步骤:
[0059]
1)调峰能力提升(降低火电机组总上网电功率)的运行方式:
[0060]
压缩储能环节:电网未要求深度调峰时,从经济性角度出发,关闭热再抽汽阀门组17,开启中排抽汽阀门组16,中压缸3排汽进入纯凝式汽轮机13做功。电网要求火电机组深度调峰时,逐步关小甚至关闭中排抽汽阀门组16,逐步开启热再抽汽阀门组17,以高品质蒸汽—中压缸进汽替代低品质蒸汽—中压缸3排汽用于驱动纯凝式汽轮机13,旁路了部分原应进入中压缸3做功发电的蒸汽,降低了火电机组发电机功率,达到了深度调峰的目的。
[0061]
膨胀释能环节:电网未要求深度调峰时,液化空气存储装置25出口的液化空气经变频液化空气升压泵26加压,将液态空气低温冷能存储于蓄冷装置27后,以略低于环境温度的气态形式进入空气加热器28升温后进入空气膨胀发电机29做功发电,并入火电机组发电机出线端。电网要求火电机组深度调峰时,逐步关小变频液化空气升压泵26的运行频率以降低释能系统的输出功率,直至释能环节停止运行。
[0062]
2)调频能力提升(快速加/减火电机组总上网电功率)的运行方式:
[0063]
(1)快速增加总上网功率
[0064]
压缩储能环节:

快速关小空气压缩机组19的纯凝式汽轮机13进汽的中排抽汽阀门组16或热再抽汽阀门组17,降低汽轮机抽汽,提升火电机组发电功率;

快速开大压缩热冷却器21的凝结水阀门开度,降低流经低压加热器组10的凝结水流量,减小低压缸4回热系统抽汽流量,提升火电机组发电功率。
[0065]
膨胀释能环节:

快速开大变频液化空气升压泵26的运行频率以提升释能系统的输出功率;

快速开大高压加热器组12入口的给水管路调节阀门组30,同时快速关小直至关闭高压加热器组12出口的给水管路调节阀门组31,降低流经高压加热器组12的给水流量,减小高压缸2和中压缸3的回热系统抽汽流量,提升火电机组发电功率。
[0066]
(2)快速减小总上网功率
[0067]
压缩储能环节:

快速加大空气压缩机组19的纯凝式汽轮机13进汽的中排抽汽阀门组16或热再抽汽阀门组17,降低汽轮机抽汽,减小火电机组发电功率;

快速全开空气压缩机组19的纯凝式汽轮机13进汽的热再抽汽阀门组17,同时快速关小直至全关中排抽汽阀门组16,由高品质蒸汽替代低品质蒸汽,减小火电机组发电功率;

快速关小甚至关闭压缩热冷却器21的凝结水阀门开度,提高流经低压加热器组10的凝结水流量,增大低压缸4回热系统抽汽流量,降低火电机组发电功率。
[0068]
膨胀释能环节:

快速调小变频液化空气升压泵26的运行频率以降低释能系统的输出功率;

快速关小直至关闭高压加热器组12入口的给水管路调节阀门组30,同时快速开大直至全开高压加热器组12出口的给水管路调节阀门组31,提高流经高压加热器组12的给水流量,增大高压缸2和中压缸3的回热系统抽汽流量,降低火电机组发电功率。
[0069]
本发明提出的调峰、调频能力提升的系统运行方式可以叠加,根据现场需求而定。
[0070]
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

起点商标作为专业知识产权交易平台,可以帮助大家解决很多问题,如果大家想要了解更多知产交易信息请点击 【在线咨询】或添加微信 【19522093243】与客服一对一沟通,为大家解决相关问题。

此文章来源于网络,如有侵权,请联系删除

tips