HI,欢迎来到起点商标网!
24小时服务QQ:2880605093

一种竹纳米纤维/聚乙烯多层复合气体阻隔材料的制备方法与流程

2021-02-23 09:02:41|401|起点商标网

[0001]
本发明属于气体阻隔材料制备领域,具体涉及一种竹纳米纤维/聚乙烯多层复合气体阻隔材料的制备方法。


背景技术:

[0002]
聚乙烯是乙烯经聚合制得的一种热塑性树脂。在工业上,也包括乙烯与少量α-烯烃的共聚物。聚乙烯无臭,无毒,手感似蜡,具有优良的耐低温性能(最低使用温度可达-100~-70℃),化学稳定性好,能耐大多数酸碱的侵蚀(不耐具有氧化性质的酸)。因其价格低廉、加工性能优异且透明度高、水蒸气阻隔性能好等优点,成为了重要的通用塑料之一,尤其在包装薄膜行业应用十分广泛。但聚乙烯是一种非极性材料,气体阻隔性能较差,通常50um厚的线性聚乙烯膜气体透过率为1000cm3/m2.24h.1atm,低压聚乙烯膜甚至超过了3000cm3/m2.24h.1atm,气体阻隔性能非常差。因此聚乙烯膜作为食品包装等不能够有效的满足食品货架期的保鲜保质要求。
[0003]
目前提高材料气体阻隔性的方法主要有表面涂层改性、多层复合改性、共混改性以及纳米复合改性等几种。最典型表面涂层是真空镀铝,但镀铝膜不透明,耐曲揉性差,揉折后易产生针孔或裂痕,从而影响阻透性。多层共挤复合的缺点是,造价高,边角料回收困难,制薄膜容易,制容器困难;而且包装薄膜一般要求厚度较小,挤出机速度也十分难以控制。共混改性的缺点是,共混物需采用增容剂及增容技术,加工工艺参数要求高。纳米复合改性是目前的一项热门研究,纳材料用于薄膜中,可使材料具有很高的强度和阻透性,延长了扩散路径,减缓了扩散速度,也就是提高了阻透性。
[0004]
纤维素是自然界赋予人类的最丰富的天然高分子物质,它不仅来源丰富,而且无毒且是可再生的资源。竹纤维作为纤维素中的一种,是从自然生长的竹子中提取出的纤维素纤维,具有良好的透气性、瞬间吸水性、较强的耐磨性和良好的染色性等特性,具有天然抗菌、抑菌、除螨、防臭和抗紫外线功能。竹纳米纤维素是一种可再生自然资源,具有许多优良性能,如较大的化学反应活性、较大比表面积、高结晶度、高强度、超精细结构和高透明性以及极强的与其他物质的互相渗透力,在纳米复合材料方面具有很好的应用前景。但纤维素表面存在大量的羟基,具有强亲水性,在有机溶剂中的分散性不够好,与聚合物材料的相容性差,限制了其在纳米复合材料中的应用。为了提高纤维素与聚合物材料的相容性,必须对纤维素进行表面改性。
[0005]
因此,本发明旨在研发一种竹纳米纤维/聚乙烯多层复合气体阻隔材料,使其在具有良好的气体阻隔性能的同时,具有天然抗菌、抑菌和抗紫外线等功能。


技术实现要素:

[0006]
基于背景技术存在的技术问题,本发明提出了一种竹纤维/聚乙烯多层复合气体阻隔材料的制备方法。
[0007]
本发明提出的一种竹纤维/聚乙烯多层复合气体阻隔材料的制备方法,其步骤如
下:
[0008]
s1:竹纳米纤维的制备:将竹纤维经naoh溶液高温处理,去离子水清洗,高温烘干,粉粹后,加入到licl/二甲基乙酰胺溶液中进行搅拌,然后使用超声波破碎仪破碎,得到竹纳米纤维素溶液;
[0009]
s2:竹纳米纤维的改性:将步骤s1中所述的竹纳米纤维溶液,加入到水解后的硅烷偶联剂溶液中进行搅拌,制得改性竹纳米纤维;
[0010]
s3:聚乙烯层材料配置:将聚乙烯、相容剂、增韧剂、阻燃剂、抗氧化剂、马来酸酐接枝聚乙烯加入高速混合器中搅拌充分混合均匀,得到聚乙烯层材料;
[0011]
s4:多层复合气体阻隔材料的成型:将s3中所述的聚乙烯层材料加入双螺杆挤出机的主料口,将s2中所述的改性竹纳米纤维加入到双螺杆挤出机的侧料口,加入按重量配比称取步骤s2得到的物料,调整双螺杆挤出机的主侧料口转速以均匀改性竹纳米纤维含量,通过双螺杆挤出机熔融混炼、挤出后,经过冷却、造粒和干燥,即得到竹纳米纤维/聚乙烯多层复合气体阻隔材料;
[0012]
优选的,所述步骤s1中,氢氧化钠溶液的质量分数为15~20%,高温处理温度为90~100℃,高温处理处理时间为30~60min;高温烘干的温度为60-80℃,时间为4-10h;粉碎后的目数为60-100目;licl/二甲基乙酰胺溶液的质量分数为8-12%,体积为8-12v;搅拌温度50-70℃,时间为2-4h;超声波破碎功率为:1000-1500w,破碎时间为10-20min。
[0013]
优选的,所述步骤2中,硅烷偶联剂/竹纳米纤维的质量比为1:10~1:5;搅拌温度为40-60℃,时间为2-4h;改性后的竹纳米纤维用0.5-1v的乙醇/水体积比为4:1混合溶液中洗涤2~3次;然后进行高温真空干燥,干燥温度为50~80℃,时间为2~4h,真空度为0.1~0.2mpa。
[0014]
优选的,水解后的硅烷偶联剂溶液制作方法为:水解溶剂为乙醇/水的体积比为1:10~1:5;水解溶剂用量为10~30v;水解温度为40~60℃;水解时间为0.5~2h;水解ph为4~6。
[0015]
优选的,所述步骤s3中,聚乙烯的质量分数为60~80%;相容剂为酸酐改性聚烯烃,质量分数为1~10%;增韧剂为乙烯-辛烯共聚物poe、丁腈橡胶nbr、热塑性聚氨酯tpu中的一种或多种,质量分数为4%~8%;阻燃剂为磷酸三苯酯、间苯二酚双偶-磷酸二苯酯、红磷母粒中的一种或几种,质量分数为5%~10%;抗氧剂为亚磷酸酯类抗氧剂,质量分数为0.1~1%;马来酸酐接枝聚乙烯的质量分数为2~5%。
[0016]
优选的,所述步骤s4中,改性竹纳米纤维/聚乙烯层材料的质量比为1:10~1:8;冷却方法为加入到25℃循冷却水中;干燥方式为高温干燥,干燥温度为40-60℃;干燥时间为4~6h。
[0017]
与已有技术相比,本发明的有益效果体现在:
[0018]
(1)竹纳米纤维素的加入提高了聚乙烯的复合材料的韧性,提高了材料的机械强度;
[0019]
(2)加入纳米材料弥补了聚乙烯材料气体阻隔差的问题,增强了材料的气体阻隔性;
[0020]
(3)制得的多层复合气体阻隔材料具有竹纤维的天然抗菌、抑菌和抗紫外线等功能;
[0021]
(4)使用可再生的竹纳米纤维提高了聚乙烯材料的气体阻隔性,方法简单绿色环保;
[0022]
(5)使用可再生的竹纳米纤维提高了聚乙烯材料的生物相容性和可降解性。
具体实施方式
[0023]
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
[0024]
实施例1:
[0025]
一种竹纳米纤维/聚乙烯多层复合气体阻隔材料的制备方法,操作步骤依序如下:
[0026]
s1:竹纳米纤维的制备:将5g竹纤维经质量分数为15%naoh溶液90℃高温处理40min,去3v离子水清洗洗涤三次,70℃烘干,用粉碎机粉粹后,筛分60-100目颗粒,加入8vlicl/二甲基乙酰胺溶液50℃搅拌3h,然后使用超声波破碎仪1200w破碎10min破碎,得到竹纳米纤维素溶液;
[0027]
s2:竹纳米纤维的改性:将步骤s1中所述的竹纳米纤维溶液,加入到水解后的硅烷偶联剂溶液中60℃搅拌2h,硅烷偶联剂/竹纳米纤维的质量比为1:8,制得改性竹纳米纤维;改性后的竹纳米纤维用0.5v的乙醇/水体积比为4:1混合溶液中洗涤2~3次;然后进行高温真空干燥,干燥温度为50℃,时间为4h,真空度为0.15mpa。
[0028]
s3:聚乙烯层材料配置:将聚乙烯(质量分数70%)、酸酐改性聚烯烃(8%)、乙烯-辛烯共聚物poe(9%)、磷酸三苯酯(7%)、亚磷酸酯类抗氧剂(1%)、马来酸酐接枝聚乙烯(5%)加入高速混合器中搅拌充分混合均匀,得到聚乙烯层材料;
[0029]
s4:多层复合气体阻隔材料的成型:将s3中所述的聚乙烯层材料加入双螺杆挤出机的主料口,将s2中所述的改性竹纳米纤维加入到双螺杆挤出机的侧料口,改性竹纳米纤维/聚乙烯层材料的质量比为1:10,调整双螺杆挤出机的主侧料口转速以均匀改性竹纳米纤维含量,通过双螺杆挤出机熔融混炼、挤出后,加入到25℃循冷却水中,然后60℃干燥5h即得到竹纳米纤维/聚乙烯多层复合气体阻隔材料;
[0030]
实施例2:
[0031]
一种竹纳米纤维/聚乙烯多层复合气体阻隔材料的制备方法,操作步骤依序如下:
[0032]
s1:竹纳米纤维的制备:将5g竹纤维经质量分数为15%naoh溶液90℃高温处理40min,去3v离子水清洗洗涤三次,70℃烘干,用粉碎机粉粹后,筛分60-100目颗粒,加入8vlicl/二甲基乙酰胺溶液50℃搅拌3h,然后使用超声波破碎仪1200w破碎10min破碎,得到竹纳米纤维素溶液;
[0033]
s2:竹纳米纤维的改性:将步骤s1中所述的竹纳米纤维溶液,加入到水解后的硅烷偶联剂溶液中60℃搅拌2h,硅烷偶联剂/竹纳米纤维的质量比为1:8,制得改性竹纳米纤维;改性后的竹纳米纤维用0.5v的乙醇/水体积比为4:1混合溶液中洗涤2~3次;然后进行高温真空干燥,干燥温度为50℃,时间为4h,真空度为0.15mpa。
[0034]
s3:聚乙烯层材料配置:将聚乙烯(质量分数75%)、酸酐改性聚烯烃(6%)、乙烯-辛烯共聚物poe(8%)、磷酸三苯酯(7%)、亚磷酸酯类抗氧剂(1%)、马来酸酐接枝聚乙烯
(5%)加入高速混合器中搅拌充分混合均匀,得到聚乙烯层材料;
[0035]
s4:多层复合气体阻隔材料的成型:将s3中所述的聚乙烯层材料加入双螺杆挤出机的主料口,将s2中所述的改性竹纳米纤维加入到双螺杆挤出机的侧料口,改性竹纳米纤维/聚乙烯层材料的质量比为1:9,调整双螺杆挤出机的主侧料口转速以均匀改性竹纳米纤维含量,通过双螺杆挤出机熔融混炼、挤出后,加入到25℃循冷却水中,然后60℃干燥5h即得到竹纳米纤维/聚乙烯多层复合气体阻隔材料;
[0036]
实施例3:
[0037]
一种竹纳米纤维/聚乙烯多层复合气体阻隔材料的制备方法,操作步骤依序如下:
[0038]
s1:竹纳米纤维的制备:将5g竹纤维经质量分数为15%naoh溶液90℃高温处理40min,去3v离子水清洗洗涤三次,70℃烘干,用粉碎机粉粹后,筛分60-100目颗粒,加入9vlicl/二甲基乙酰胺溶液50℃搅拌3h,然后使用超声波破碎仪1200w破碎10min破碎,得到竹纳米纤维素溶液;
[0039]
s2:竹纳米纤维的改性:将步骤s1中所述的竹纳米纤维溶液,加入到水解后的硅烷偶联剂溶液中60℃搅拌2h,硅烷偶联剂/竹纳米纤维的质量比为1:8,制得改性竹纳米纤维;改性后的竹纳米纤维用0.5v的乙醇/水体积比为4:1混合溶液中洗涤2~3次;然后进行高温真空干燥,干燥温度为50℃,时间为4h,真空度为0.15mpa。
[0040]
s3:聚乙烯层材料配置:将聚乙烯(质量分数70%)、酸酐改性聚烯烃(8%)、乙烯-辛烯共聚物poe(9%)、磷酸三苯酯(7%)、亚磷酸酯类抗氧剂(1%)、马来酸酐接枝聚乙烯(5%)加入高速混合器中搅拌充分混合均匀,得到聚乙烯层材料;
[0041]
s4:多层复合气体阻隔材料的成型:将s3中所述的聚乙烯层材料加入双螺杆挤出机的主料口,将s2中所述的改性竹纳米纤维加入到双螺杆挤出机的侧料口,改性竹纳米纤维/聚乙烯层材料的质量比为1:8.5,调整双螺杆挤出机的主侧料口转速以均匀改性竹纳米纤维含量,通过双螺杆挤出机熔融混炼、挤出后,加入到25℃循冷却水中,然后60℃干燥5h即得到竹纳米纤维/聚乙烯多层复合气体阻隔材料;
[0042]
实施例4:
[0043]
一种竹纳米纤维/聚乙烯多层复合气体阻隔材料的制备方法,操作步骤依序如下:
[0044]
s1:竹纳米纤维的制备:将5g竹纤维经质量分数为15%naoh溶液90℃高温处理40min,去3v离子水清洗洗涤三次,70℃烘干,用粉碎机粉粹后,筛分60-100目颗粒,加入8vlicl/二甲基乙酰胺溶液50℃搅拌3h,然后使用超声波破碎仪1200w破碎10min破碎,得到竹纳米纤维素溶液;
[0045]
s2:竹纳米纤维的改性:将步骤s1中所述的竹纳米纤维溶液,加入到水解后的硅烷偶联剂溶液中60℃搅拌2h,硅烷偶联剂/竹纳米纤维的质量比为1:8,制得改性竹纳米纤维;改性后的竹纳米纤维用0.5v的乙醇/水体积比为4:1混合溶液中洗涤2~3次;然后进行高温真空干燥,干燥温度为50℃,时间为4h,真空度为0.15mpa。
[0046]
s3:聚乙烯层材料配置:将聚乙烯(质量分数68%)、酸酐改性聚烯烃(9%)、乙烯-辛烯共聚物poe(9%)、磷酸三苯酯(8%)、亚磷酸酯类抗氧剂(1%)、马来酸酐接枝聚乙烯(5%)加入高速混合器中搅拌充分混合均匀,得到聚乙烯层材料;
[0047]
s4:多层复合气体阻隔材料的成型:将s3中所述的聚乙烯层材料加入双螺杆挤出机的主料口,将s2中所述的改性竹纳米纤维加入到双螺杆挤出机的侧料口,改性竹纳米纤
维/聚乙烯层材料的质量比为1:9.5,调整双螺杆挤出机的主侧料口转速以均匀改性竹纳米纤维含量,通过双螺杆挤出机熔融混炼、挤出后,加入到25℃循冷却水中,然后60℃干燥5h即得到竹纳米纤维/聚乙烯多层复合气体阻隔材料。
[0048]
1、透光率测试:取实施例中制得的气体阻隔材料尺寸都为:40mm(长)
×
15mm(宽)
×
0.05mm(厚)。在波长范围为190nm~800nm的紫外-可见光区域内,利用紫外-可见分光光度计进行测试制得材料的透光率。
[0049]
2、透湿率测试:测试条件为温度:30℃,湿度:90%(rh),方法:称重法,参照标准:gb/t1037-1988。
[0050]
3.抑菌实验:在制作培养基的过程中,分别加入一片1cm
×
1cm
×
0.05mm的制备的气体阻隔材料,然后接种分别接种大肠杆菌、幽门螺杆菌,放在培养箱中观察抑菌效果。
[0051]
通过上述实验测得实施例1-4的实验结果如下:
[0052]
透过率分别90.1%,91.2%,92.3%,91.2%。透视率为实施例1>实施例3>实施例2>实施例4。通过实验结果发现,制备的竹纳米纤维聚乙烯多层复合气体阻隔材料透光率均大于90%,其中实施例3制得的透光率最大,为92.3%,实施例1透光率最小为90.1%。透湿率越小,代表制得的多层复合气体阻隔材料的气体阻隔性越大,通过实施例1-4的数据发现,透湿率最小的为实施例4,即实施例4的气体阻隔性最好。
[0053]
通过抑菌实验的实验组与对照组进行对比发现,加入制备的多层气体阻隔材料的一组,在气体阻隔材料周围均无细菌生长,大肠杆菌和幽门螺杆菌的生行均被抑制,其中实施例中活性炭成分最高,抑菌效果最明显。

起点商标作为专业知识产权交易平台,可以帮助大家解决很多问题,如果大家想要了解更多知产交易信息请点击 【在线咨询】或添加微信 【19522093243】与客服一对一沟通,为大家解决相关问题。

此文章来源于网络,如有侵权,请联系删除

tips