在轨道上运行的车辆、用于对在轨道上运行的车辆的蓄能设备进行冷却的装置和用于控制该装置的方法与流程
本发明涉及一种在轨道上运行的车辆、一种用于对在轨道上运行的车辆的蓄能设备进行冷却的装置以及一种用于控制该装置的方法。
通过架空线或第三条轨道等供电的电驱动的在轨道上运行的车辆、尤其铁路机车车辆依赖于要行驶的线路完全装备有这种供电系统。但近来,越来越多地致力于还在不具有这种完全装备的线路上使用这类车辆。为了也在线路的不具有相应的用于供电的基础设施的区段中确保车辆的驱动,这些车辆配备有形式为例如电容器或蓄电池的蓄能器。
这种车辆的一个例子是西门子公司的名为
https://www.siemens.com/press/pool/de/feature/2012/infrastructure-cities/rail-systems/2012-08-avenio/produktinformation-sitras-hes-d.pdf)。提到的蓄能器系统由双层电容器和牵引蓄电池的组合构成,双层电容器和牵引蓄电池既在车辆的制动过程中存储产生的电能又在停在停车站期间存储输送给有轨电车的电能。
这种牵引蓄电池具有多个彼此电连接的电池单体或电池单体的模块,这些电池单体具有高功率和高能量密度。为了实现电池单体的较长的使用寿命,电池单体应当在定义的温度范围内运行,其中,该温度范围根据用于电池单体的材料确定。尤其在较高的环境温度中需要对电池单体进行冷却,以便将其温度保持在温度范围内的值上。电池单体例如在充电和放电过程中自身也产生热量,这些热量需要相应地排出。前述的混合蓄能系统
但空调设备集成在牵引蓄电池的容器中不利地导致高成本和增大的空间需求。因此,本发明所要解决的技术问题是提供一种用于冷却牵引蓄电池的装置,该装置在成本和空间要求方面更有利。
该技术问题通过根据独立权利要求的在轨道上运行的车辆、装置、蓄能设备、空调设备、装置和方法解决。扩展设计在相应的从属权利要求中给出。
按照本发明的第一方面,在轨道上运行的车辆具有至少一个蓄能设备,该蓄能设备具有至少一个牵引蓄电池和冷却设备,所述冷却设备用于借助在至少一个冷却剂回路中循环的冷却剂冷却所述牵引蓄电池,其中,所述蓄能设备用于为所述车辆的至少一个牵引设备供应电能。此外,在轨道上运行的车辆具有至少一个空调设备,该空调设备用于借助在制冷剂回路中循环的制冷剂对所述车辆的车厢的乘客舱进行空气调节,在轨道上运行的车辆还具有用于控制所述空调设备的控制设备。其特征在于,所述空调设备还具有传热器
通过按照本发明在空调设备中设置用来将蓄能设备的冷却剂回路与空调设备的制冷剂回路耦连的附加的传热器,可以省去仅用于冷却牵引蓄电池的空调设备。由此可以有利地减少成本和牵引蓄电池需要的安装空间。
按照本发明的第一方面的扩展设计,控制设备还设计用于控制冷却剂回路中的冷却剂的流量。由此,控制设备可以有利地用于既控制制冷剂回路中的制冷剂的流量又控制冷却剂回路中的冷却剂的流量。
按照本发明的第一方面的扩展设计,所述空调设备具有至少一个在制冷剂回路中连接在传热器之前的阀,并且所述控制设备还设计用于借助于该阀控制通过传热器的制冷剂的流量。由控制设备控制的阀优选布置在传热器的上游,由此通过阀可以调节通过传热器的制冷剂的流量。替代地,该阀可以以相同的方式布置在传热器的下游,其中,但在这种情况下,传热器中的冷却剂的压力在某些情况下不利地升高。
按照本发明的第一方面的扩展设计,所述传热器在制冷剂回路中与空调设备的蒸发器并联地布置。在例如以已知的方式用于在轨道上运行的车辆中的所谓的低温蒸气空调设备的蒸发器中,液态制冷剂蒸发并且冷却流过的空气,该空气供给乘客舱。由于附加的、例如以水/水传热器形式实现的传热器与蒸发器并联布置,因此液态制冷剂还被输送给传热器,从而能够以较高的效率实现制冷剂和同样呈液态的冷却剂之间的热能或冷能交换。
按照本发明的第一方面的扩展设计,所述牵引蓄电池具有多个电池单体或者多个分别具有多个电池单体的模块。通过使用电池单体可以有利地实现关于牵引蓄电池的希望的电压和容量的简单和灵活的尺寸设计。
按照本发明的第一方面的扩展设计,蓄能设备也用于为所述车辆的辅助设备供应电能。这些辅助设备尤其还可以包括用在车辆中的空调设备,该空调设备的运行也需要电能。在此,辅助设备例如通过用于不同电压范围和频率范围的一个或多个所谓的辅助设备变流器被供应,所述辅助设备变流器与牵引换流器的直流电压中间电路连接或直接与蓄能设备连接。
按照本发明的第二方面,用于在轨道上运行的车辆的蓄能设备具有至少一个牵引蓄电池,该牵引蓄电池用于为所述车辆的至少一个牵引设备供应电能,蓄能设备还具有冷却设备,该冷却设备用于借助在至少一个冷却剂回路中循环的冷却剂冷却所述牵引蓄电池。其特征在于,所述冷却剂回路通过至少一个布置在至少一个空调设备中的传热器与所述空调设备的制冷剂回路耦连,其中,所述空调设备用于借助在制冷剂回路中循环的制冷剂对所述车辆的车厢的乘客舱进行空气调节。
按照本发明的第二方面的扩展设计,冷却剂在冷却剂回路中的循环和制冷剂在制冷剂回路中的循环由用于控制空调设备的控制设备控制。
按照本发明的第三方面,用于在轨道上运行的车辆的空调设备具有至少一个制冷剂回路,制冷剂在该制冷剂回路中循环,以便对在轨道上运行的车辆的车厢的乘客舱进行空气调节。其特征在于,在所述制冷剂回路中布置有附加的传热器,所述车辆的蓄能设备的冷却设备的冷却剂回路借助于该传热器与所述制冷剂回路耦连。
按照本发明的第三方面的扩展设计,在空调设备的制冷剂回路中,在附加的传热器之前连接有至少一个阀,用于控制空调设备的控制设备借助于该阀控制通过传热器的制冷剂的流量。
按照本发明的第三方面的扩展设计,所述传热器在空调设备的制冷剂回路中与蒸发器并联地布置。
按照本发明的第四方面,用于对在轨道上运行的车辆的牵引蓄电池进行冷却的装置具有至少一个根据第二方面的蓄能设备、至少一个根据第三方面的空调设备以及至少一个用于控制空调设备和蓄能设备的控制设备。
本发明的第五方面涉及一种用于控制用于对在轨道上运行的车辆的蓄能设备的牵引蓄电池进行冷却的装置的方法,其中,所述蓄能设备作为所述装置的组成部分用于为车辆的至少一个牵引设备供应电能并且还具有冷却设备,该冷却设备用于借助在至少一个冷却剂回路中循环的冷却剂冷却所述牵引蓄电池,并且其中,所述装置具有至少一个空调设备,该空调设备用于借助在制冷剂回路中循环的制冷剂对所述车辆的车厢的乘客舱进行空气调节,所述装置还具有控制设备。其特征在于,借助于所述控制设备控制通过附加地布置在制冷剂回路中的传热器的制冷剂的流量,其中,所述传热器将制冷剂回路与冷却剂回路耦连。
按照本发明的第五方面的扩展设计,在所述控制设备中至少实施以下步骤:检测牵引蓄电池的当前温度或将来预期温度;将牵引蓄电池的检测到的温度与额定温度或额定温度范围进行比较;根据确定的温度差确定用于冷却牵引蓄电池的冷却功率的需求;并且根据确定的冷却功率的需求控制空调设备的制冷剂回路的通过传热器的制冷剂的流量和冷却设备的冷却剂回路的通过传热器的冷却剂的流量。
在此,牵引蓄电池的电池单体的当前温度可以例如借助于布置在电池单体上或电池单体邻近处、例如模块的壳体上的温度传感器来检测。替代地可以借助于温度传感器确定冷却剂的温度或流入冷却设备和流出冷却设备的冷却剂各自的温度之间的差值并且由该差值推断出电池单体或牵引蓄电池的当前温度。根据电池单体在充电过程中的已知性能、即电池单体的由于充电过程或流过充电电流引起的升温可以确定电池单体的预期的温度升高,以便能够在离开额定温度或额定温度范围之前就控制对牵引蓄电池的冷却。这尤其可以有利地用在对充电过程的控制的时间规划已知的情况中。当牵引蓄电池例如在车辆的行驶线路的每个停车站或某些停车站通过布置在停车站的充电基础设施充电时,可以例如在车辆驶入这样的停车站时就激活牵引蓄电池的冷却回路。这尤其当牵引蓄电池在停车之前的制动过程中就借助于电动力学的制动产生的电能充电时是有利的。
根据本发明的第五方面的基于上述扩展设计的另外的扩展设计,所述控制设备根据确定的用于牵引蓄电池的冷却功率的需求控制通过空调设备的蒸发器的制冷剂的流量以冷却乘客舱。
以下根据实施例详细阐述本发明。在附图中:
图1示出在轨道上运行的车辆的示意性的侧视图;
图2示出按照本发明的装置的示意图,该装置具有空调设备和蓄能设备;
图3示出备选的按照本发明的装置的示意图;和
图4示出按照本发明的方法的流程图。
为了清楚起见,在附图中,同一附图标记用于相同的或起相同或几乎相同作用的部件。
图1示意性地示出示例性的在轨道上运行的车辆1、尤其铁路机车车辆的侧视图。铁路机车车辆1例如设计为用于客运的具有多节车厢的动车组,其中,仅示出形式为端部车厢2的第一车厢和与第一车厢相连的形式为中间车厢3的第二车厢,在第二车厢上可以连接有另外的车厢。所示的两个车厢均分别具有车体4,车体4通过形式为动轮转向架或导轮转向架的转向架5支撑在未示出的轨道上,其中,端部车厢2的右侧的后端部和中间车厢3的左侧的前端部还可以支撑在共同的转向架、尤其所谓的雅各布斯转向架上。端部车厢2沿纵轴线l或水平轴线示例性地被划分为多个空间区域。这些区域一方面是在前部区域中的驾驶台或头部模块6,另一方面是与驾驶台6邻接的车体4。车体4包围乘客舱7,在乘客舱7中设有用于乘客的座椅方案。与端部车厢2不同地,与端部车厢2相连的中间车厢3仅具有车体4,该车体4同样包围乘客舱7。乘客可以经布置在相应的车体4的侧壁中的、未示出的门进入和离开车厢2、3的乘客舱7。此外,乘客可以经车厢过渡部8进入相邻车厢2、3的乘客舱7中。这种车厢过渡部8通常通过波纹棚或折棚被保护免受环境影响。
例如,在端部车厢2的车体4的顶部和地板下方或者说地板下区域中示例性地布置有作为动车组1的部分电气装备的多个电气设备或用于电气设备的容器或电气设备的壳体。这些电气设备例如用于驱动动车组1、尤其用于对在图1中未示出的牵引马达的供电和控制。这些牵引马达例如布置在端部车厢2的设计为动轮转向架的右转向架5中,动车组1的另外的转向架可以尤其根据所需的驱动功率也装备有牵引马达。在车体4的地板下区域中例如布置有变压器9,变压器9的初级绕组可以通过例如布置在中间车厢3的车体4的顶部上的集电器12与未示出的输送高压交流电的架空线连接。而在端部车厢2的车体4的顶部的左侧上示例性地布置有与变压器9连接的用于为牵引马达供应电能的牵引换流器10。在端部车厢2的车体4的顶部的右侧上示例性地布置有具有牵引蓄电池的蓄能设备11,该蓄能设备11例如与牵引换流器10的直流电压中间电路连接。在所示的车厢2、3的车体4的顶部上居中地示例性地分别布置有空调设备13,空调设备13用于对位于其下方的乘客舱7进行空气调节。
除了动车组的电气装备的示例性示出的部件外,另外的部件、尤其控制设备、另外的辅助设备及其供电装置可以以相同的方式布置在车体的顶部上、地板下区域中或内部空间中。特别的部件、尤其牵引蓄电池11在车体的顶部上和地板下区域中的所示布置方式也仅是示例性的。例如,变压器9也可以布置在车体的顶部上或内部空间中,而例如空调设备14可以分别布置在车体的地板下区域中。这也相应地适用于动车组的电气装备的另外的部分。
图2示意性地示出在图1中在端部车厢2的顶部上并排布置的部件空调设备13和牵引蓄电池11的各自示例性的结构,这两个部件在该图中分别通过点划线限定边界。针对在端部车厢2中未布置空调设备的情况,尤其当端部车厢2不具有乘客舱时,这两个部件、即空调设备13和具有牵引蓄电池110的蓄能设备11也可以布置在不同的、例如相邻的车厢上。
示例性示出的空调设备13的结构基本上与所谓的低温蒸气空调设备的结构相符,低温蒸气空调设备例如已用在动车组的车厢中。该空调设备具有基本上包括四个部件的制冷剂回路130,这四个部件各自的功能下面简要说明。这些单独的部件以已知的方式通过用于运输液态和气态的制冷剂的管线、管子或软管相互连接。空调设备的部件通常布置在共同的壳体中,为了清楚起见该壳体未示出。
低温蒸气空调设备按照压缩制冷系统的原理工作,根据该原理,循环的制冷剂呈气态被压缩、由于放热而冷凝并且通过减压在吸热的情况下再次蒸发。反映到空调设备的所示四个主要部件上,这意味着,来自乘客舱的暖空气和必要时从乘客舱外部输入的新鲜空气借助于未示出的风扇流过蒸发器131。在原则上具有空气/水传热器的功能的蒸发器131中,例如冷却至8℃的液态制冷剂蒸发并且因此将流过的空气冷却。如此冷却的空气通过通常布置在车厢的内顶棚区域中的新鲜空气通道和内顶棚的合适部位上的空气出口分散在车厢的乘客舱中。沿制冷剂的流动方向连接在蒸发器131之后的压缩机132、例如压气机吸入生成的制冷剂蒸气并且将该制冷剂蒸气的压力从蒸发器131出口处的3.8bar提高到17bar。同时,通过压缩,制冷剂蒸气的温度从13℃升高到例如100℃。沿制冷剂的流动方向在压缩机132之后连接有具有空气/水传热器功能的冷凝器133,在该冷凝器133中,利用外部空气将制冷剂蒸气冷却至例如60℃,以便制冷剂蒸气再次液化。最后,通过沿制冷剂的流动方向连接在冷凝器133之后的减压器134、例如膨胀阀将制冷剂的压力降低至提到的示例性的3.8bar,从而制冷剂冷却至前述的8℃的温度。冷却的液态制冷剂最后又流入蒸发器131中,由此制冷剂回路闭合。
前述空调设备13连同提到的部件可以为动车组的每节车厢优选冗余地设计,如同例如在图3中示意性地示出的那样。这意味着最大冷却功率仅可以由两个空调设备提供,每个空调设备因此仅可以提供最大冷却功率的一部分。由此在两个空调设备之一发生故障的情况下,可以有利地确保所属的乘客舱的至少部分冷却。另一方面,在乘客舱的冷却功率需求可以由两个空调设备中的一个满足的情况下,另一个空调设备可以被关闭,从而可以有利地提高装置的效率并且因此降低成本。提供冷却功率的至少一部分尤其对用于高速范围的动车组是重要的,以便确保尤其在较高的环境温度下乘客的舒适度。在这样的动车组中,新鲜空气仅通过车厢的空调设备被供给,而作为新鲜空气供给的可能的备选的车厢窗户不能打开。
在图2中示例性地示出的蓄能设备11具有至少一个牵引蓄电池110,该牵引蓄电池由一个或多个模块构成,这些模块分别具有彼此电连接的多个电池单体。该蓄电池或这些单独的单体模块通常布置在共同的壳体中,该壳体确保保护电池单体免受环境影响。为了清楚起见,在图2中也未单独示出这种壳体。
由于开头描述的对电池单体的运行温度的要求以确保高的能量密度和较长的使用寿命,因此牵引蓄电池110与冷却设备111连接。冷却设备可以例如以散热器的形式实现,该散热器与单独的电池单体或单体模块的壳体连接,液态冷却剂循环通过该散热器。在图2中,冷却设备111示例性地仅在牵引蓄电池110的侧旁示出,但在实践中,冷却设备111或其散热器应当优选基本上完全覆盖由牵引蓄电池110或其电池单体占据的基面,以便确保均匀地冷却或加热电池单体。根据环境温度或电池单体的当前状态,冷却剂被加热或冷却,以便将电池单体的温度保持在优选的工作温度范围内。优选地在冷却剂进入冷却设备111的入口的区域中以及冷却剂从冷却设备111流出的出口的区域中分别布置有温度传感器112,通过温度传感器112可以确定冷却剂的入口温度和出口温度。所确定的温度例如用于确定牵引蓄电池110的电池单体的平均温度,并且由此推导出对减少或增加冷却剂供应或冷却剂温度的需求。另外,如图2中示例性补充示出的那样,可以在牵引蓄电池110的壳体中和/或在单独的单体模块的壳体中或壳体上设置另外的温度传感器113,以便能够更准确地确定电池单体或单体模块的相应的温度。
在开头描述的已知的西门子公司开发的用于铁路机车车辆的混合蓄能系统
在此,附加的传热器135在所描述的制冷剂回路130中与蒸发器131并联布置,因此在压缩机132运行时,冷却至例如8℃的液态制冷剂既可以流过蒸发器131也可以流过传热器135。借助于液压泵136、例如循环泵将用于冷却牵引蓄电池110的冷却剂输送通过传热器135并且被流过的制冷剂冷却,同时制冷剂被流过的冷却剂加热并且转变为气态。冷却剂在牵引蓄电池110的冷却设备111和空调设备13的传热器135之间的运输通过合适的管子、管线或软管实现。这些管子、管线或软管如果布置在车体外部则应当优选补充地用合适的材料隔热,以便使向环境的冷能和热能释放最小化。在车体外部的布置方式尤其在图1的动车组1的示例性的结构中是可能的,在图1中,空调设备13和蓄能设备11均布置在车体4的顶部上。
在图2的例子中使用根据逆流原理起作用的传热器135,在该传热器中,制冷剂和冷却剂对向地从彼此旁流过,如同通过制冷剂和冷却剂的各自的用箭头表示的流动方向示出的那样。但也可以以相同方式使用其它已知类型的传热器。在图2的例子中布置在空调设备13的区域中的液压泵136也可以以相同的方式布置在蓄能设备11的区域中、尤其布置在冷却设备111中。
用于端部车厢2的乘客舱7的空调设备13的功能由例如同样布置在端部车厢2中的控制设备14控制。该控制设备可以例如仅控制端部车厢2的空调设备13,但备选地,该控制设备也可以设计为作为中央控制设备控制动车组1的所有车厢的空调设备。控制设备14还可以是上级的中央控制设备的组成部分,尤其用于控制动车组1的辅助设备。控制设备14例如根据乘客舱7的当前的实际温度与调节或预定的额定温度的比较来控制空调设备13的压缩机132。该控制在此例如通过电气的控制线进行,如同示例性地在图2中以从控制设备14导向压缩机132的虚线的形式示出的那样。在开启压缩机132之后,压缩机的运行实现制冷剂在制冷剂回路130中的循环,而通过控制设备14关闭压缩机132则中断制冷剂的循环。为了蒸发器131和冷凝器133在制冷剂循环时起作用,控制设备14还控制与这些部件对应的通风机或风扇,以便导引空气通过相应的空气/水传热器。通风机或风扇同样借助于电气的控制线由控制设备14控制,但其中,这些控制线以及通风机或风扇在图2中未单独示出。
在通过附加的传热器135扩展的制冷剂回路130中示例性地布置有两个单向阀137、138,借助于这两个单向阀可以控制流向蒸发器131和传热器135的制冷剂的流量。作为所示布置方式的替代,这些阀137、138也可以沿制冷剂的流动方向分别连接在蒸发器131和传热器135之后。此外,这两个阀137、138还可以用三通阀代替,该三通阀能够实现制冷剂仅流向蒸发器131、仅流向传热器135或既流向蒸发器131又流向传热器135。但同样可行的是,尤其在当存在牵引蓄电池11的冷却需求时乘客舱7的冷却需求也总是存在的情况下,仅设置控制制冷剂流向传热器135的阀137。阀137、138或替代地可能的三通阀又借助于电气的控制线由控制设备14控制。
阀137、138的不同的、由控制设备14控制的开关状态与车厢的乘客舱7和牵引蓄电池110的各自的冷却需求相关。因此,在电气化的线路区段上行驶期间,动车组1例如通过架空线被供应电能并且牵引蓄电池110既不充电也不放电,例如在这样的行驶中通常不需要对牵引蓄电池11进行冷却。在这种情况下,控制设备14关闭连接在传热器135之前的阀137,从而空调设备13以已知的方式根据需求仅用于冷却乘客舱7。如果在这种情况下也不存在用于乘客舱的冷却要求,例如由于乘客舱7的温度处于额定温度范围内或低于额定温度,则控制设备14还可以关闭压缩机132的运行并且因此停止制冷剂回路130中的制冷剂流。
而当动车组1在非电气化的线路区段上运行时,其中,用于驱动动车组1的电能从牵引蓄电池110获取,由于放电过程导致电池单体温度升高至预定的温度阈值以上,这种升温使得需要对牵引蓄电池进行冷却。电池单体的这种升温还可能例如在牵引蓄电池11的充电过程中或者当环境温度接近温度阈值时出现。电池单体或电池模块的升温可以例如通过在图2中示出的温度传感器113来检测,或者在冷却剂泵136运行时通过由温度传感器112测得的冷却剂温度之差来确定。但备选地,在电池单体的性能已知的情况下,还可以基于充电或放电电流的测量来推断电池单体或单体模块的温度。在这些情况下,控制设备14打开阀137,使得在压缩机132运行时制冷剂流过传热器135。此外,控制设备14根据牵引蓄电池110对冷却功率的需求来控制液压泵136,以便在传热器135中被冷却的冷却剂循环通过冷却设备111的冷却剂回路139并且冷却牵引蓄电池110的电池单体或单体模块。根据在对牵引蓄电池110进行冷却的期间是否也需要对乘客舱7进行冷却,控制设备1关闭或打开连接在蒸发器131之前的阀138并且相应地控制蒸发器131的通风机或风扇的功能。
压缩机132、冷凝器133、减压器134这些部件和必要时将这些部件连接的管子、管线或软管以及空调设备13的另外的上文未描述的部件需要适应于冷却功率的增大的需求,该需求的增大是由于相对于已知的仅用于冷却车厢的乘客舱7而言额外的对牵引蓄电池11的冷却引起的。原则上,空调设备的部件为此应当根据最大需要的用于乘客舱7和牵引蓄电池110的冷却功率的总和来设计尺寸。但乘客舱的热时间常数相对较大,这意味着乘客舱的温度仅相对缓慢地改变,这点可以有利地用于例如在牵引蓄电池110的充电过程的时间段内或在该时间段的受限制的一部分内降低用于乘客舱的冷却功率、尤其降到零,以便为牵引蓄电池提供更高的冷却功率。考虑到这种控制可能性,空调设备13的最大冷却功率因此可以选择为低于乘客舱7和牵引蓄电池110最大需要的冷却功率之和,并且提到的部件可以相应地设计尺寸。
在空调设备13的上文提到的冗余的实施方式中,可以更灵活地为蓄能设备11提供冷却功率。如此冗余的结构在图3中示意性地示出,其中未示出空调设备13和蓄能设备11的个别的、上文已经描述的部件或组成部分。在这种情况中,空调设备由两个单独构造的空调设备13.1和13.2构成,这两个空调设备分别根据图2所示的空调设备13构造并且可以分别提供最大冷却功率的一部分。这两个空调设备13.1、13.2可以在单独的壳体或容器中、但也可以在共同的壳体或容器中例如又布置在车体的顶部上。集成在空调设备13.1、13.2中的附加的用于冷却牵引蓄电池的传热器135.1、135.2分别通过用于输送冷却剂的合适的管子、管线或软管与蓄能设备11中的冷却设备111连接。在蓄能设备11的冷却设备111中可以针对空调设备13.1、13.2设置单独的冷却剂回路139.1、139.2,但替代地,这些冷却剂回路也可以在冷却设备中合并或沿冷却剂的流动方向观察在冷却设备111之前合并并且在冷却设备111之后重新拆分,如同示例性地在图3中所示的那样。
在冷却剂回路139.1、139.2合并的情况下应当在冷却设备111的所有冷却剂入流和出流中优选布置有阀。为此可以例如在每个入流和出流中设置与关于图2描述的单向阀137、138相符的单向阀,这些单向阀也由控制设备14通过控制线控制。但备选地也可以使用三通阀113,该三通阀示例性地在图3中布置在蓄能设备11中。单向阀或三通阀113也可以替代地布置在空调设备13.1、13.2中或者仅布置在两个空调设备13.1、13.2之一中,其中,在仅布置在两个空调设备之一中的情况下,至少一个冷却剂回路139.1、139.2的管子、管线或软管需要在两个空调设备13.1、13.2之间导引。
通过电气的控制线适当地控制阀113和冷却剂泵136.1、136.2,由此控制设备14可以根据需要控制通过蓄能设备11的冷却设备111的冷却剂流。因此,在仅中等的冷却功率需求下,例如仅激活两个冷却剂回路之一。如果这例如是被下方的空调设备13.2经由传热器135.2供给的下方的冷却剂回路139.2,则控制设备14如此控制冷却剂泵136.2和三通阀113,使得冷却剂可以在下方的冷却剂回路139.2中循环通过传热器135.2和冷却设备111,而在上方的、被上方的空调设备13.1经由传热器135.1供给的冷却剂回路139.1中则没有冷却剂循环。尤其当用于乘客舱的冷却功率也仅存在中等需求时,仅运行下方的空调设备13.2足以用于乘客舱7和牵引蓄电池11二者的冷却。
而当乘客舱和牵引蓄电池的冷却功率需求均较高时,例如在牵引蓄电池的充电过程期间同时环境温度较高时可能是这种情况,在此情况下,两个空调设备13.1、13.2均运行,以便满足冷却功率需求。在这种情况下,控制设备14如此控制下方的冷却剂回路和上方的冷却剂回路139.1的冷却剂泵136.1、136.2以及三通阀113,使得两个冷却剂回路139.1、139.2的冷却剂均循环通过蓄能设备11的冷却设备111。此外,控制设备14还可以通过上文关于图2描述的对两个空调设备13.1、13.2的相应的压缩机和相应的单向阀的控制来调节通过蒸发器和传热器135.1、135.2的制冷剂的流量,使得为牵引蓄电池提供足够的冷却功率。如上所述,在牵引蓄电池110的冷却功率需求较高的情况下,用于乘客舱的冷却功率可以暂时、例如在牵引蓄电池110的充电过程的全部或部分时间段内为了有利于牵引蓄电池110的冷却功率而被降低,因为乘客舱的温度仅相对缓慢地升高。在充电过程完成后或在牵引蓄电池的冷却功率需求减小后,可以通过相应地控制两个空调设备13.1、13.2中的阀重新为乘客舱提供增大的冷却功率,从而乘客舱的在该时间段后必要时处于额定温度范围外的实际温度可以重新接近额定值。
在这种情况下,通过控制设备14对空调设备13.1、13.2和牵引蓄电池11中的阀113的控制可以尤其如此进行,即,用于牵引蓄电池11的冷却功率的高需求仅仅或至少主要由两个空调设备13.1、13.2中的一个来满足,而乘客舱的冷却功率需求则仅仅或至少主要由两个空调设备13.1、13.2中的另一个来满足。但替代地,两个空调设备13.1、13.2均可以以相同的方式为牵引蓄电池11和乘客舱二者提供冷却功率。
优选地,对空调设备13.1、13.2和蓄能设备11的描述的部件的控制以尽可能有效率地运行为目标。尤其地,一个空调设备全负荷运行或几乎全负荷运行比两个空调设备分别部分负荷运行更有效率。同时,在控制时应当注重各个部件的低磨损和长的使用寿命。
图4基于图2和图3的例子示例性地示出在控制设备14中进行的方法200的流程图,该方法具有多个方法步骤,根据这些方法步骤来控制对牵引蓄电池110的冷却。
该方法在步骤201中开始,例如通过在行驶开始前动车组投入运行开始,因此,动车组的电气辅助设备、尤其空调设备和一个或多个所属的部件也投入运行。在第一方法步骤202中,控制设备例如借助于在图2中示出的温度传感器或前述的替代方法来检测牵引蓄电池的电池单体或单体模块的当前的实际温度。
在随后的第二方法步骤203中,控制设备将检测到的实际温度与预定的额定温度或预定的额定温度范围进行比较。如果实际温度处于额定温度范围内(分支“是”),则继续检测牵引蓄电池的实际温度。但如果实际温度高于额定温度或处于额定温度范围外(分支“否”),则在随后的第三方法步骤204中继续该方法。
在第三方法步骤204中,控制设备基于检测到的实际温度与额定温度或额定温度范围之间的确定的差值来确定用于冷却牵引蓄电池的冷却功率的需求。控制设备在随后的第四方法步骤205中根据该确定的冷却功率需求控制一个或多个空调设备和蓄能设备的泵、阀和必要时另外的部件,以便根据确定的需求为牵引蓄电池提供冷却功率。
在此,描述的控制一直进行,直到实际温度再次与额定温度相当或再次处于额定温度范围内。
示出和上文描述的方法步骤不是全面的,另外的或修改的方法步骤也可以在控制设备中进行。因此可以例如在步骤204和步骤205之间规定另外的步骤,在该步骤中检查是否至少一个空调设备已在运行中或哪个空调设备已在运行中以及空调设备当前产生何等冷却功率。基于该信息,控制设备可以测量是否可以由已经处于运行中的空调设备提供冷却牵引蓄电池需要的冷却功率,或者是否需要接通另外的空调设备。如前所述,通过控制设备可以在乘客舱的冷却和牵引蓄电池的冷却之间进行负荷分配并且如果存在的话在多个空调设备之间进行负荷分配。在此,该负荷分配应当以一个或多个空调设备的尽可能有效率的运行为目标。第一方法步骤201还可以包括例如检测电池单体中的例如由于充电过程开始而产生的预期的温度升高。这可以使得例如直接过渡到第三方法步骤204,在第三方法步骤204中确定预期的冷却功率需求。
起点商标作为专业知识产权交易平台,可以帮助大家解决很多问题,如果大家想要了解更多知产交易信息请点击 【在线咨询】或添加微信 【19522093243】与客服一对一沟通,为大家解决相关问题。
此文章来源于网络,如有侵权,请联系删除