一种嵌套式同轴混联混合动力系统及其控制方法与流程
本发明涉及汽车零部件技术领域,更具体的是,本发明涉及一种嵌套式同轴混联混合动力系统及其控制方法。
背景技术:
随着汽车工业的快速发展,“节能”“减排”已成为汽车工业发展的主旋律。混合动力系统作为传统动力向新能源动力过渡的一种中间产物,其节能效果突出,同时兼顾使用便利性和驾驶者习惯,已成为当前汽车发展的既要技术方案。
混合动力按照其结构原理分为串联式混合动力、并联式混合动力、混联式混合动力三种,其中混联式混合动力原理性兼顾串联式混合动力、并联式混合动力优点,可实现发动机转速及扭矩的较为充分双解耦,具有燃油经济性高、控制灵活、动力性强等特点,受到相关零部件厂家及整车厂家的重视。混联式混合动力系统一般有电动发电一体机、主驱电机、耦合系统等组成,根据耦合系统的结构类型,分为开关混联式、行星混联式两种。
传统的开关混联式混合动力系统以同轴并排布置、中间有电控离合器的双电机系统为核心部件,通过离合器的结合与分离,实现串联分支与并联分支之间的相互切换。离合器分离时,切断发动机和电动机与驱动轮的机械连接,从而实现串联驱动;离合器结合时,系统以并联模式驱动。其结构及控制逻辑简单明了,系统综合燃油经济性较高,是混合式混合动力的重要发展方向。
但是,传统的开关混联式混合动力系统由于双电机并排布置,其轴向尺寸较长,同时动力系统为至少四个不同部件进行轴向串联布置,部件加工精度及同轴度要求较高,系统工作过程中容易出现噪音大、轴承过早损坏等问题。
基于双电机和电控离合器的机电耦合单元是开关混联混合动力系统的核心部件,其电气性能及机械性能优劣直接关系到混合动力整车的燃油经济性、动力性及舒适性。
技术实现要素:
本发明设计开发了一种嵌套式同轴混联混合动力系统,通过双电机和离合器均采用嵌套式设置,使同轴开关混联混合动力系统的轴向尺寸小和同轴控制精度高。
本发明还设计开发了一种嵌套式同轴混联混合动力系统的控制方法,根据不同的车况及车辆的多个参数,判断车辆在行驶中的输出动力源和车辆在制动时的能量回收源,并且获得具体的动力数值和制动数值。
本发明提供的技术方案为:
一种嵌套式同轴混联混合动力系统,包括:
发动机;以及
飞轮,其与所述发动机的输出端相连接;
飞轮壳,其设置在所述飞轮的外侧,且所述飞轮壳设置在所述发动机和变速箱之间;
主驱电机,其定子热压固定在所述飞轮壳内部;
isg电机,其定子通过内侧固定导板热压固定在所述飞轮壳上,且所述isg电机嵌套在所述主驱电机的内部;
扭转减震器,其输入端与所述飞轮可拆卸的连接,所述扭转减震器的输出端与所述isg电机的转子相连接;
离合器从动盘,其与所述主驱电机的转子相连接;
离合器主动盘,其与所述isg电机的转子相连接;
离合器执行机构,其空套在所述变速箱的输入轴上,且所述离合器执行结构与所述离合器从动盘相连接,用于推动所述离合器从动盘与所述离合器主动盘选择性的结合或者分离;
其中,所述变速箱的输入轴固定在所述离合器从动盘上。
优选的是,还包括:
传动轴,其一端与所述变速箱的输出轴相连接;
驱动桥,其输入端与所述传动轴的另一端相连接,输出端与车轮相连接。
优选的是,还包括:
变速箱换挡执行机构,其设置在所述变速箱的档口处,用于所述变速箱的档位调节;
变速箱及离合控制单元,其与所述离合器执行机构和变速箱换挡执行机构相连接。
优选的是,还包括:
动力电池;以及
高压配电单元,其与所述动力电池相连接,用于控制电能的通断;
逆变器组,其与所述高压配电单元、主驱电机和isg电机相连接。
优选的是,所述isg电机的定子和转子均设置在所述主驱电机的转子内部,且所述isg电机的定子与所述主驱电机的转子之间无相互连接。
一种嵌套式同轴混联混合动力系统的控制方法,使用所述的嵌套式同轴混联混合动力系统,包括如下步骤:
步骤一、获取车辆的油门踏板开度、主驱电机转速、当前变速箱速比、轮胎直径、动力电池电压、动力电池平均温度、动力电池soc、动力电池允许持续充电电流、发动机转速、isg电机转速、后桥速比、整车总质量、制动踏板开度、车辆迎风面积和滚动阻力系数;
步骤二、当车辆起步和行车过程中,psoc>psoc0时:
若tdrvdmd<tmainmtrc,则主驱电机为输出动力源,所述主驱电机的输出驱动扭矩为驾驶需求驱动扭矩,所述离合器从动盘与所述离合器主动盘分离,所述变速箱换挡执行机构挂挡至起步档位并保持;
式中,psoc为动力电池当前soc值,psoc0为动力电池允许起步的最低soc阈值,tdrvdmd为驾驶需求驱动扭矩,tmainmtrc为主驱电机最大输出扭矩;
若tdrvdmd>tmainmtrc且tdrvdmd<(tmainmtrc+tenginec),发动机及主驱电机为输出动力源,isg电机发电,所述离合器执行机构起步离合器结合动作,所述变速箱换挡执行机构挂挡至起步档位并保持;
式中,tenginec为发动机最大输出扭矩;
其中,当psoc<ps1o、发动机处于tdrvcom、nidle工作点下且efuel<efuelη,主驱电机输出扭矩为主驱电机最大输出扭矩,发动机输出扭矩为发动机经济输出扭矩;
式中,psoc1为标定值,tdrvcomps为预测补偿扭矩值,且预测补偿扭矩值为驾驶需求驱动扭矩与主驱电机最大输出扭矩的差值,nidle为变速箱输入轴转速值,efuelη为发动机最小经济点除以isg电机发电与主驱电机驱动综合效率的燃油经济性值,efuel为燃油经济性值;
当psoc≥psoc1、发动机未处于tdrvcomps、nidle工作点下或者发动机处于tdrvcomps、nidle工作点下且efuel≥efuelη,主驱电机输出扭矩为主驱电机最大输出扭矩,发动机输出扭矩为发动机的差值扭矩;
若tdrvdmd>(tmainmtrc+tenginec),发动机、主驱电机和isg电机均为输出动力源,所述发动机输出扭矩为发动机最大输出扭矩,所述主驱电机输出扭矩为主驱电机最大输出扭矩,所述isg电机输出扭矩为扭矩值差值,所述离合器执行机构起步离合器结合动作,所述变速箱换挡执行机构挂挡至起步档位并保持;
当车辆行车制动时:
当psoc>psoc4时,主驱电机、isg电机不执行制动能量回收控制;
式中,psoc4为动力电池允许充电的最高soc值;
当psoc<psoc4时,执行制动能量回收控制:
若tbrakedmd<(tmainmtrc+tenginefrictionc),所述主驱电机执行制动扭矩值,所述离合器执行机构保持离合器分离,所述换挡执行机构保持当前在挡挡位;
式中,tbrakedmd为制动扭矩值,tenginefrictionc为发动机摩擦扭矩;
若tbrakedmd>(tmainmtrc+tenginefrictionc)且tbrakedmd<(tmainmtrc+tisgmtrc+tenginefrictionc),所述主驱电机执行主驱电机最大输出扭矩,所述isg电机执行isg电机的差值扭矩,所述离合器执行机构保持离合器结合,所述换挡执行机构保持当前挡位;
式中,tisgmtrc为isg电机最大输出扭矩;
若tbrakedmd>(tmainmtrc+tisgmtrc+tenginefrictionc),所述主驱电机执行主驱电机最大输出扭矩,所述isg电机执行isg电机最大输出扭矩,所述离合器执行机构保持离合器结合,所述换挡执行机构保持当前挡位。
优选的是,当车辆起步,psoc>psoc0且tdrvdmd<tmainmtrc时,psoc<psoc1,则整车控制单元向发动机发送目标转速控制指令,整车控制单元向isg电机发送目标发电扭矩控制指令,直至psoc>psoc1,发动机熄火,isg电机待机;
当车辆起步,psoc>psoc0且tdrvdmd>(tmainmtrc+tenginec)时,psoc<psoc0,发动机输出扭矩不高于发动机最大输出扭矩。
优选的是,在所述行车过程中的换挡过程中时,当psoc<psoc3时,发动机输出扭矩为发动机经济输出扭矩,isg电机发电为isg电机的行车差值扭矩。
优选的是,psoc<psoc4且tbrakedmd<(tmainmtrc+tenginefrictionc)时,psoc<psoc1,发动机驱动isg电机进行以动力电池允许持续充电电流进行发电,所述发动机启动;
在所述行车制动,psoc<psoc4且tbrakedmd<(tmainmtrc+tenginefrictionc)时,psoc>psoc1,所述发动机保持停机或者怠速状态,所述isg电机保持自由状态。
优选的是,所述isg电机的差值扭矩满足:
tisggendiff=tengineeco+tmainmtrc-tdrvdmd;
式中,tisggendiff为差值扭矩,tengineeco为发动机经济输出扭矩;
所述发动机的差值扭矩满足:
tenginediff=tdrvcomps;
式中,tenginediff为发动机的差值扭矩;
所述扭矩值差值满足:
tisgmtr=min(tisgmtrc,tdrvdmd-tmainmtrc-tenginec);
式中,tisgmtr为扭矩值差值,tisgmtr≤tisgmtrc,tisgmtrc为isg电机最大输出扭矩;
所述制动扭矩值:
式中,rt为轮胎半径,ir为后桥速比,fbreakedmd为整车需求制动扭矩值;
所述差值扭矩值满足:
tisggen=tbrakedmd-tmainmtrc-tenginefrictionc;
式中,tisggen为差值扭矩值。
本发明所述的有益效果:
(1)本发明提供的嵌套式同轴混联混合动力系统,通过isg电机嵌套在主驱电机内部,较双电机并排布置方式大大缩短了轴向尺寸,结构紧凑;
(2)嵌套式双电机布置结构下电机为单支撑结构,加工精度要求低,同轴度好;
(3)嵌套式isg电机和扭转减震器的结构设计,使得扭转减震器可均匀吸收来自发动机的振动的同时扭矩传递更均匀,由扭转减震器及离合器组成的扭转系统,可最大程度上吸收系统运动部件的扭转及振动,提高整车舒适性;
(4)离合器的主动盘、飞轮及isg电机转子构成发动机的惯量系统,模式切换过程中惯量变化较小,离合器位于双电机结构的后部,装配、维护、保养方便;
(5)通过离合器布置在双电机嵌套式结构中间,使得混联混合动力系统控制灵活、原理简单可靠、功率密度高,特别适用于各种乘用车辆及商用车辆。
(6)本发明提供的嵌套式同轴混联混合动力系统的控制方法,根据不同的车况及车辆的多个参数,判断车辆在行驶中的输出动力源和车辆在制动时的能量回收源,并且获得具体的动力数值和制动数值,提高了精确度的同时,节约能源。
附图说明
图1为本发明所述嵌套式同轴混联混合动力系统的结构示意图。
图2为本发明所述实施例的结构示意图。
图3为本发明所述嵌套式同轴混联混合动力系统的整体结构示意图。
图4为本发明所述的发动机万有特性图。
具体实施方式
下面结合附图对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。
如图1、图3所示,本发明提供一种嵌套式同轴混联混合动力系统,包括:发动机110、飞轮壳121、飞轮122、扭转减震器输入端131、扭转减震器输出端132、isg电机转子141、isg电机定子142、内侧固定导板143、主驱电机转子151、主驱电机定子152、离合器主动盘161、离合器从动盘162和轴承163,其中,所述飞轮122与所述发动机110的输出端相连接;飞轮壳121设置在所述飞轮122的外侧,即所述飞轮壳121固定设置在所述发动机110的输出端一侧;扭转减震器输入端131与所述飞轮122通过螺栓连接;主驱电机定子152固定在所述飞轮壳121的内部;所述飞轮壳121与所述主驱电机定子152利用热胀冷缩原理通过热压形式结合,即所述飞轮壳121通过烤箱烘箱加热至特定温度后,所述主驱电机定子152压入所述飞轮壳121内部,待所述飞轮壳121冷却后,二者可靠结合;且主驱电机定子152呈圆环柱状,内部嵌套有主驱电机转子151,主驱电机转子151呈圆环柱状,主驱电机转子151可在主驱电机定子152内转动;isg电机定子142通过内侧固定导板143固定在所述飞轮壳121的内部,所述isg电机定子142经内侧固定导板143与所述飞轮壳121利用热胀冷缩原理通过热压形式结合,即所述飞轮壳121通过烤箱烘箱加热至特定温度后,所述isg电机定子142压入所述飞轮壳121内部,待所述飞轮壳121冷却后,二者可靠结合;且isg电机定子142呈圆环柱状,内部嵌套有isg电机转子141,isg电机转子141可在isg电机定子142内转动;由isg电机定子142、isg电机转子141组成的isg电机嵌套在主驱电机转子151内部;且isg电机定子142与主驱电机转子151之间无相互连接,主驱电机转子151可转动;扭转减震器位于isg电机转子141内部,扭转减震器输出端132与isg电机转子141相连接;在另一种实施例中,离合器还可为电磁离合器,所述离合器包括离合器主动盘161和离合器从动盘162,离合器从动盘162与所述主驱电机转子151通过侧板相连接;离合器主动盘161与所述isg电机转子141通过花键相连接,离合器主动盘161可实现轴向的前后运动;电磁线圈及其保持架与isg电机定子142相连;当电磁线圈通电时,产生磁力作用,电磁离合器的主动盘轴向移动与从动盘紧密结合,实现动力的轴向传递。
如图1、2所示,在另一实施例中,本发明所述的嵌套式同轴混联混合动力系统的动力传动还包括:离合器执行机构164、变速箱170、变速箱输入轴171、变速箱输出轴172、传动轴180、第一十字万向节181、伸缩花键182、第二十字万向节183、驱动桥184、驱动轮185、动力电池191、高压配电单元192、逆变器组193和变速箱及离合控制单元194;其中,所述变速箱输入轴171与所述离合器从动盘162通过花键相连,同速转动;且所述变速箱输入轴171穿过所述离合器从动盘162通过轴承163可转动的设置在所述离合器主动盘161上,实现变速箱输入轴171的径向支撑;所述飞轮壳121设置在所述发动机110和变速箱170之间;离合器执行机构164空套在所述变速箱输入轴171上,且所述离合器执行结构164与所述离合器从动盘162相连接,用于推动所述离合器从动盘162与所述离合器主动盘161选择性的结合或者分离;变速箱输出轴172通过第一十字万向节181与传动轴180的一端相连接,在传动轴180上设置有伸缩花键182,传动轴180的另一端通过第二十字万向节183与驱动桥184的输入端相连接,驱动桥184的输出端与驱动轮185相连接。
所述变速箱换挡执行机构,其位于变速箱170的换挡口位置,为可控执行机构,通过选换挡拨头垂直的两方向移动实现选档及换挡操作,通过选换挡拨头位置的反馈得到选换挡进度及当前挡位信息,用于所述变速箱170的档位调节;变速箱及离合控制单元194与所述离合器执行机构164和变速箱换挡执行机构相连接;动力电池191储存或放出电能,作为优选的,动力电池191为高电压平台;高压配电单元192与所述动力电池191相连接,实现动力电池191电能到逆变器组193电能的通断控制;逆变器组193与所述高压配电单元192、主驱电机和isg电机相连接,逆变器组193将经高压配电单元192来的直流电能转化为对应的三相交流电,实现isg电机、主驱电机的驱动及发电控制。
本发明提供的嵌套式同轴混联混合动力系统,isg电机嵌套在主驱电机的内部,扭转减震器嵌套在isg电机的内部,结构紧凑,较双电机并排布置方式大大缩短了轴向尺寸;嵌套式isg电机、扭转减震器结构设计,扭转减震器可均匀吸收来自发动机的振动,扭转减震器的输出端与isg电机转子中间部位相连,较端部连接扭矩传递更均匀;嵌套式双电机布置结构下电机为单支撑结构,加工精度要求低,同轴度好;离合器位于双电机结构的后部,装配、维护、保养方便;离合器的主动盘、飞轮及isg电机转子构成发动机的惯量系统,模式切换过程中惯量变化较小;由扭转减震器及离合器组成扭转系统,可最大程度上吸收系统运动部件的扭转及振动,提高整车舒适性,特别适用于各种乘用车辆及商用车辆,满足车辆轻量化、高nvh、高可靠性的需求。
本发明还提供一种嵌套式同轴混联混合动力系统的控制方法,使用所述的嵌套式同轴混联混合动力系统,包括如下步骤:
步骤一、获取车辆的油门踏板开度、主驱电机转速、当前变速箱速比、轮胎直径、动力电池电压、动力电池平均温度、动力电池soc、动力电池允许持续充电电流、发动机转速、isg电机转速、后桥速比、整车总质量、制动踏板开度、车辆迎风面积和滚动阻力系数;
步骤二、当车辆起步时,判断tdrvdmd与tmainmtrc、tenginec、tisgmtrc的大小,从而判断驱动的动力源,变速箱及离合器控制单元控制离合器执行机构执行离合器分离或结合动作,控制变速箱换挡执行机构执行挡位操作:
当psoc>psoc0时,判断选择执行s1a、s1b、s1c;
式中,psoc为动力电池实际soc值,psoc0为动力电池允许起步的最低soc阈值;
s1a、若tdrvdmd<tmainmtrc,则主驱电机输出驱动扭矩为驾驶需求驱动扭矩,变速箱及离合控制单元控制离合器执行机构使得所述离合器从动盘与所述离合器主动盘分离,所述变速箱换挡执行机构挂挡至起步档位并保持;
式中,tdrvdmd为驾驶需求驱动扭矩,tmainmtrc为主驱电机最大输出扭矩,主驱电机最大输出扭矩与主驱电机最大输入扭矩相等;
其中,通过查找x坐标为油门踏板开度、y坐标为车辆速度,z坐标为驾驶需求驱动扭矩的三维map表的形式获得驾驶需求驱动扭矩,即:
tdrvdmd=lookupmap(paccelpedal,vvehicle);
式中,paccelpedal为油门踏板开度,vvehicle为当前车速;
其中,所述当前车速满足:
式中,nmainmtr为主驱电机转速,ig为当前变速箱速比,dt为轮胎直径;
通过查找横坐标为主驱电机转速的二维map表及动力电池相关电流对应的扭矩值获得主驱电机最大输出扭矩,即:
tmainmtrc=min[lookupmap(nmainmtr),tbpgen1]或
tmainmtrc=min[lookupmap(nmainmtr),tbpdrv1]
式中,tmainmtrc为主驱电机最大输出扭矩,tbpgen1为动力电池持续或者峰值充电电流下主驱电机nmainmtr转速下对应的发电扭矩值,tbpdrv1为动力电池持续或者峰值放电电流下主驱电机nmainmtr转速下对应的发电扭矩值;
其中,
式中,ubp为动力电池电压,ic为动力电池电流,ηmaindrv2t为主驱电机驱动效率,ηt2maingen为主驱电机发电效率;
动力电池电流通过查找x坐标为电池温度,y坐标为电池soc,z坐标为电流的三维map表获得:
ic=lookupmap(tbp,psoc);
式中,tbp为动力电池平均温度,psoc为动力电池soc;
动力电池为主驱电机及isg电机驱动时提供电能,发电时将电能进行存储,动力电池所述充放电电流限值为主驱电机、isg电机两者电流的矢量和;
且当psoc<psoc1时,isg电机输出起动扭矩将发动机起动,然后发动机驱动isg电机进行发电,充电电流以动力电池允许持续充电电流为限,取发动机的工作点最优工作区域;
其中,发动机的工作点最优工作区域通过发动机万有特性map分析后标定获取,优选的是,发动机的工作点最优工作区域为发动机最低燃油消耗量1.1倍对应的工作区域,如图4所示,最低燃油经济性为192区域,1.1倍后为210左右的区域,也就是210线圈出来的上侧区间。
整车控制单元向发动机发送目标转速控制指令,整车控制单元向isg电机发送目标发电扭矩控制指令,直至psoc>psoc1,发动机保持熄火状态,isg电机保持自由待机状态;
式中,psoc1为标定值,由动力电池电量等决定,在本实施例中,psoc1>50%。
s1b、若tdrvdmd>tmainmtrc且tdrvdmd<(tmainmtrc+tenginec),发动机及主驱电机为输出动力源,变速箱及离合控制单元控制离合器执行机构起步离合器结合动作,所述控制换挡执行机构挂挡至起步档位并保持;
式中,tenginec为发动机最大输出扭矩,且发动机最大输出扭矩通过查找横坐标为发动机转速的二维map获得,即:
tenginec=lookupmap(nengine);
式中,nengine为发动机转速;
其中,起步离合器结合动作指离合器主动盘与离合器从动盘之间存在转速差时,离合器缓慢结合,同时发动机超越控制保持发动机转速不超出标定起步高转速阈值;
其中,所述标定起步高转速阈值通过发动机怠速乘以标定高转速倍数值获得,最为优选的,标定高转速倍数值为大于1.1、小于1.5;
且当psoc<psoc1、发动机处于tdrvcomps、nidle工作点下燃油经济性值低于efuelη,主驱电机输出扭矩为主驱电机最大输出扭矩,发动机位于最优工作区域且发动机输出扭矩为发动机经济输出扭矩,isg电机发电为isg电机的差值扭矩;
其中,tdrvcomps为预测补偿扭矩值,nidle为变速箱输入轴转速值,efuelη为发动机最小经济点除以isg电机发电与主驱电机驱动综合效率的燃油经济性值,且预测补偿扭矩值满足:
tdrvcomps=tdrvdmd-tmainmtrc;
燃油经济性值满足:
通过查发动机万有特性表获得发动机在特定工作点的燃油经济性,即通过查找x坐标为发动机转速,y坐标为发动机输出扭矩,z坐标为发动机燃油经济性值获得发动机燃油经济性值,即:
efuel=lookupmap(nengine,tengine);
式中,efuel为发动机燃油经济性值,nengine为发动机转速,tengine为发动机实时扭矩;
式中,efuelmin为发动机最优燃油经济性值,ηgen2maindrv为isg电机发电效率值;
在本实施例中,发动机最优燃油经济性值efuelmin为发动机效率最高5%区域的最低燃油经济性值;
isg电机发电效率值满足:
ηgen2maindrv=ηisg2e×ηmaindrv2t;
式中,ηisg2e为isg电机发电效率,ηmaindrv2t为主驱电机驱动效率;
发动机经济输出扭矩tengineeco为发动机燃油经济性下降一定阈值的工作区域上限获得,优选使用map标定方法获取,即通过横坐标为发动机转速的二维map查表获得:
tengineeco=lookupmap(nengine);
其中:nengine为发动机转速;阈值为分析发动机万有特性map,取发动机最低燃油消耗量1.1倍对应的工作区域,差值获得工作区域下限扭矩值绘制横坐标为发动机转速的二维map;
isg电机的差值扭矩满足:
tisggendiff=tengineeco+tmainmtrc-tdrvdmd;
式中,tisggendiff为差值扭矩,tengineeco为发动机经济输出扭矩,
当psoc≥psoc1、发动机未处于tdrvcomps、nidle工作点下或者发动机处于tdrvcomps、nidle工作点下燃油经济性efuel≥efuelη,主驱电机输出扭矩为主驱电机最大输出扭矩,发动机输出扭矩为发动机的差值扭矩,其中,发动机的差值扭矩满足:
tenginediff=tdrvcomps;
式中,tenginediff为发动机的差值扭矩。
s1c、当tdrvdmd>(tmainmtrc+tenginec),发动机、主驱电机、isg电机联合输出驱动扭矩,其中发动机输出扭矩为发动机最大输出扭矩,主驱电机输出扭矩为主驱电机最大输出扭矩,isg电机输出扭矩为扭矩值差值,变速箱及离合控制单元控制离合器执行机构起步离合器结合动作,所述换挡执行机构挂挡至起步档位并保持;
其中,扭矩值差值满足:
tisgmtr=min(tisgmtrc,tdrvdmd-tmainmtrc-tenginec);
式中,tisgmtr为扭矩值差值,tisgmtr≤tisgmtrc,tisgmtrc为isg电机最大输出扭矩;
所述isg最大输出扭矩与isg电机最大输入扭矩相等,通过横坐标为isg电机转速的二维map查表及动力电池相关电流对应的扭矩值为限获得:
tisgmtrc=min[lookupmap(nisgmtr),tbpgen2]或
tisgmtrc=min[lookupmap(nisgmtr),tbpdrv2];
式中,nisgmtr为isg电机转速,tbpgen2为动力电池剩余持续充电电流下isg电机nisgmtr转速下对应的发电扭矩值,tbpgen2为动力电池剩余持续放电电流下isg电机nisgmtr转速下对应的驱动扭矩值;
动力电池由于主驱电机驱动或发电模式产生放电电流或充电电流,动力电池剩余持续充电电流为动力电池持续充电电流与主驱电机实际电流矢量差,动力电池剩余持续放电电流为动力电池持续放电电流与主驱电机实际电流差;
其中,动力电池剩余持续放电电流下isg电机nisgmtr转速下对应的驱动扭矩值满足:
式中,ηisgdrv2t为isg电机驱动效率,ηt2isggen为isg电机发电效率;
发动机通过isg电机发电,电能存储至动力电池,isg电机进行驱动,其效率值为:
ηgen2isgdrv=ηisg2e×ηbp×ηisgdrv2t;
式中,ηbp为电池充放电循环效率;ηisgdrv2t为isg电机驱动效率;
当psoc<psoc0时,发动机输出扭矩不高于发动机最大输出扭矩。
当车辆行车驱动过程中,车辆驱动的动力源与起步过程中的相同,但在换挡过程中,变速箱及离合控制单元向整车控制单元请求主驱电机换挡转速同步扭矩ttcumainmtrdmd、发动机与isg电机的耦合扭矩ttcucpldmd,主驱电机换挡转速同步扭矩用于实现目标挡位主动齿与从动齿的转速同步,实现换挡过程中无冲击,整车控制单元接收扭矩请求后,透传主驱电机换挡转速同步扭矩ttcumainmtrdmd至主驱电机控制器,发动机与isg电机分配扭矩根据耦合扭矩和发动机当前实际扭矩等获得;
当psoc<psoc3时,以不高于动力电池持续充电电流扭矩及isg电机最大输出扭矩值的最小值为限,发动机位于最优工作区域,发动机输出扭矩为发动机经济输出扭矩,isg电机发电为isg电机的行车差值扭矩,当发动机输出扭矩超过限度时适当降低发动机扭矩请求值;
式中,psoc3由动力电池容量及动力电池实时匹配状态标定获得,在本实施例中,psoc3<50%;
其中,所述isg电机的行车差值扭矩满足:
tisggendiff=ttcucpldmd-tengineeco;
式中,tisggendiff为isg电机的行车差值扭矩,ttcucpldmd为tcu请求的发动机与isg电机的耦合扭矩,tengineeco为发动机经济输出扭矩;
当车辆行车制动过程中,根据tbrakedmd、tisgmtr、tmainmtrc获得制动回收扭矩值:
当psoc>psoc4时,主驱电机、isg电机不执行制动能量回收控制;
当psoc<psoc4时,执行制动能量回收控制,判断选择执行s3a、s3b、s3c;
式中,psoc4为动力电池允许充电的最高soc值,由动力电池容量及动力电池实际匹配状态标定获得;
s3a:当tbrakedmd<(tmainmtrc+tenginefrictionc)时,整车控制单元向主驱电机请求制动能量回收扭矩,主驱电机执行制动扭矩值,整车控制单元向离合器及变速箱控制的单元请求在挡、分离离合器操作,离合器及变速箱控制单元控制离合器执行机构保持离合器分离,换挡执行机构保持当前在挡挡位;
式中,tbrakedmd为制动扭矩值,tenginefrictionc为发动机摩擦扭矩;
其中,根据车辆阻力值获得制动扭矩值:
式中,rt为轮胎半径,ir为后桥速比,fbreakedmd为整车需求制动扭矩值;
其中,整车需求制动扭矩值满足:
fbreakedmd=mvehicle×avehicledec-fw-ff;
式中,mvehicle为整车总质量,avehicledec为驾驶需求减速度,fw为当前风阻,ff为当前滚动阻力;
其中,通过x、y坐标分别为制动踏板开度、整车总质量,纵坐标为驾驶需求减速度的三维map查表获取驾驶需求减速度,即:
avehicledec=lookupmap(pbrakepedal,mvehicle);
式中,pbrakepedal为制动踏板开度,mvehicle为整车总质量;
当前风阻满足:
式中,a为车辆迎风面积,cd为空气阻力系数,vvehcle为当前车速;
当前滚动阻力满足:
ff=mvehicle×g×f;
式中,g为重力加速度,f为滚动阻力系数;
其中,发动机摩擦扭矩由横坐标为发动机转速的二维map查表获得,即:
tenginefrictionc=lookupmap(nengine);
式中,nengine为发动机转速;
当psoc<psoc1时,发动机驱动isg电机进行发电,充电电流以动力电池允许持续充电电流为限,取发动机工作点最优工作区域;整车控制单元向发动机发送目标转速控制指令,向isg电机发送目标发电扭矩控制指令;
当psoc>psoc1时,若发动机为停机状态则整车控制单元无发动机请求,向isg电机请求自由状态控制指令,若发动机为运行状态,则整车控制单元向发动机请求怠速控制,向isg电机请求自由状态控制指令;
s3b:当tbrakedmd>(tmainmtrc+tenginefrictionc)且tbrakedmd<(tmainmtrc+tisgmtrc+tenginefrictionc)时,当发动机转速高于怠速值时,主驱电机及isg电机执行制动能量回收扭矩控制,主驱电机执行主驱电机最大输出扭矩,isg电机执行差值扭矩值,整车控制单元向离合器及变速箱控制单元请求离合器结合、保持挡位;离合器及变速箱控制单元控制离合器执行机构保持离合器结合,换挡执行机构保持当前挡位,整车控制单元控制发动机保持断油零扭矩状态;
其中,差值扭矩值满足:
tisggen=tbrakedmd-tmainmtrc-tenginefrictionc;
式中,tisggen为差值扭矩值;
s3c:当tbrakedmd>(tmainmtrc+tisgmtrc+tenginefrictionc)时,整车控制单元控制主驱电机及isg电机执行制动能量回收扭矩控制,主驱电机执行的制动扭矩为主驱电机最大输出扭矩,isg电机执行的制动扭矩为isg电机最大输出扭矩,整车控制单元向离合器及变速箱控制单元请求离合器结合、保持挡位;离合器及变速箱控制单元控制离合器执行机构保持离合器结合,换挡执行机构保持当前挡位,整车控制单元控制发动机保持断油零扭矩状态;
本发明提供的一种嵌套式同轴混联混合动力系统的控制方法,根据不同的车况及车辆的多个参数,判断车辆在行驶中的输出动力源和车辆在制动时的能量回收源,并且获得具体的动力数值和制动数值,提高了精确度的同时,节约能源。
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这里示出与描述的图例。
起点商标作为专业知识产权交易平台,可以帮助大家解决很多问题,如果大家想要了解更多知产交易信息请点击 【在线咨询】或添加微信 【19522093243】与客服一对一沟通,为大家解决相关问题。
此文章来源于网络,如有侵权,请联系删除