HI,欢迎来到起点商标网!
24小时服务QQ:2880605093

树脂基复合材料表面电阻加热涂层及其制备方法与流程

2021-02-02 19:02:41|438|起点商标网
树脂基复合材料表面电阻加热涂层及其制备方法与流程
本发明属于树脂基复合材料功能涂层
技术领域:
,具体涉及一种树脂基复合材料表面电阻加热涂层及其制备方法。
背景技术:
:飞机在寒冷、潮湿的空气中飞行时,过冷水滴撞击到机体表面、机翼前缘、发动机进气道及飞机其它部位都有可能引起不同程度的结冰。机翼表面发生结冰时会引起阻力增大、升力下降、临界攻角减小,从而导致飞机的操纵性和稳定性品质恶化。如果飞机部件没有有效的防/除冰措施,那么极易造成飞机的重大安全事故。目前在大中型运输机和民用客机应用机翼与发动机的防除冰较多采用来自发动机压气机的热气,经调压和调温后,喷射加热蒙皮表面,防止机翼(尾翼、发动机进气道)前缘防护区域结冰。随着对发动机燃油效率及经济可承受性要求的进一步提高,迫切需要开发新型经济有效的防除冰系统。英国吉凯恩航空服务有限公司提出了一种电热式加热衬垫和制造电热式加热衬垫的方法(cn102822056),采用火焰喷涂技术将金属轨道喷涂到热塑性材料基体上;专利cn106811714公开了一种高电阻率电热涂层及其制备方法和应用,主要采用热喷涂法制备cumn合金和玻璃粉组成的复合粉体,涂层室温电阻率(50~1000)×10-8ω·m;专利cn108220859公开了一种电热涂层及其制备方法,采用热喷涂技术制备绝缘涂层和fecraly发热涂层,由于树脂基复合材料耐热性能和导热性能与传统金属材料差距较大,直接采用热喷涂技术制备绝缘层极易造成复合材料制件的烧损,对于喷涂工艺的控制难度极大。技术实现要素:本发明的目的是:提供一种树脂基复合材料表面电阻加热涂层及其制备方法。为解决此技术问题,本发明的技术方案是:一方面,提供一种树脂基复合材料表面电阻加热涂层,所述电阻加热涂层包括:在树脂基复合材料1表面依次制备的树脂-金属混合底层2、金属过渡层3、绝缘隔热层4、电阻加热层5和绝缘导热层6;所述树脂-金属混合底层2中金属的体积比为40~60%,混合底层的厚度为30~50μm,金属颗粒的粒径应满足30~50μm。优选的金属粉末为铝粉或铜粉,金属粉末的添加起到缓解涂层与基体材料的热不匹配,提升涂层与基体间界面强度的效果。所述绝缘隔热层4材料为al2o3粉末和聚苯酯组成,涂层绝缘电阻不小于500mω。其中聚苯酯重量分数为1%~4%,起到封闭氧化铝涂层孔隙,改善复杂环境下的绝缘电阻。电阻加热层5材料为nicr粉末和聚苯酯组成,聚苯酯重量分数为1%~4%,机载35v电源下,电阻涂层热功率密度不低于3.5w/cm2。绝缘导热层6材料由乙酸正丁酯、2甲基丙醇乙酸、固化剂和片状微米级六方bn组成,其中六方bn的含量为1.0~4.0%。金属过渡层3材料铝粉或铜粉,采用爆炸喷涂工艺制备,过渡层厚度为50~100μm。所述树脂基复合材料1是碳纤维增强树脂基复合材料或石英纤维增强树脂基复合材料。另一方面,提供一种树脂基复合材料表面电阻加热涂层的制备方法,所述的制备方法包含以下步骤:步骤一、对树脂基复合材料1表面进行处理;步骤二、将配置好的树脂-金属混合底漆均匀的喷涂于树脂基复合材料1表面;在室温~150℃环境下,固化0.5~3小时,获得树脂基-金属混合底层2;步骤三、对树脂基-金属混合底层2表面进行清洗和喷砂预处理,其中喷砂采用刚玉砂粒,粒径应≤198μm,气体工作压力为0.3mpa;步骤四、在树脂基-金属混合底层2表面制备金属过渡层3,制备过程控制基体温度45~60℃,中间层与基体结合强度不低于15mpa;步骤五、在金属过渡层3表面制备绝缘隔热层4,制备过程基体温度控制在60~100℃,绝缘隔热层厚度为50~100μm;步骤六、首先对绝缘隔热层4表面进行整体涂覆室温固化类可剥离涂料,然后对可剥离涂料进行微细铣切,得到电阻加热带;将电阻加热带区域的可剥涂料剥离,获得电阻加热待喷涂区及可剥涂料区;采用爆炸喷涂工艺整体喷涂nicr粉末和聚苯酯组成的混合粉末,厚度10~50μm;将可剥涂料区剥离,即获得电阻加热层5;步骤七、采用室温气体喷枪将配置好的绝缘导热漆均匀的喷涂于电阻加热层5表面;在室温~150℃环境下,固化0.5~3小时,得到绝缘导热层6;绝缘导热层6厚度10~20μm,最终在树脂基复合材料1表面获得电阻加热涂层。优选地,步骤二采用室温气体喷枪喷涂树脂-金属混合底漆。优选地,步骤四中金属过渡层3采用爆炸喷涂工艺制备。优选地,步骤五中绝缘隔热层4采用爆炸喷涂工艺制备。优选地,步骤一具体操作如下:采用工业丙酮或碱性清洗剂对树脂基复合材料1表面进行擦洗,采用压缩空气吹干。优选地,所述步骤二树脂-金属混合底层2采用室温气体喷涂工艺制备。本发明的有益效果是:本发明在传统电阻加热涂层基础上,设计了包含由树脂-金属混合底层、金属过渡层、绝缘隔热层、电阻加热层和绝缘导热层组成的电阻加热涂层体系。针对树脂基复合材料基体增加树脂-金属混合和金属中间层结构,有效缓解了由涂层热膨胀系数不匹配造成的界面应力过大的问题,显著提升了涂层与基体界面结合强度,达到15mpa以上;通过在传统氧化铝绝缘涂层中增加聚苯酯材料,有效的改善了复杂环境绝缘涂层的绝缘性能,同时改善单纯氧化铝涂层的隔热性能,最大限度的降低热功率的损耗;采用nicr和聚苯酯组成的混合电阻涂层体系,提升了单纯nicr金属涂层电阻过低,高电压下涂层易过热烧蚀的难题,增加了电阻涂层的可控性;制备过程采用爆炸喷涂工艺和室温气体喷涂工艺进行制备,具有工艺过程可控性强、成本低,喷涂效率高、涂层性能好的优点。附图说明为了更清楚地说明本发明实施的技术方案,下面将对本发明的实例中需要使用的附图作简单的解释。显而易见,下面所描述的附图仅仅是本发明的一些实施例,对于本领域的技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。图1为本发明的树脂基复合材料表面电阻加热涂层结构示意图;其中,1-树脂基复合材料、2-树脂-金属混合底层、3-金属过渡层、4-绝缘隔热层、5-电阻加热层、6-绝缘导热层、7-可剥涂料区。具体实施方式为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域的普通技术人员在没有做出创造性劳动的前提下,所获得的所有其他实施例,都属于本发明保护的范围。下面将详细描述本发明实施例的各个方面的特征。在下面的详细描述中,提出了许多具体的细节,以便对本发明的全面理解。但是,对于本领域的普通技术人员来说,很明显的是,本发明也可以在不需要这些具体细节的情况下就可以实施。下面对实施例的描述仅仅是为了通过示出本发明的示例对本发明更好的理解。本发明不限于下面所提供的任何具体设置和方法,而是覆盖了不脱离本发明精神的前提下所覆盖的所有的产品结构、方法的任何改进、替换等。在各个附图和下面的描述中,没有示出公知的结构和技术,以避免对本发明造成不必要的模糊。下面结合具体实施例描述本发明的树脂基复合材料表面电阻加热涂层的制备方法。实施例1树脂复合材料基体采用碳纤维增强树脂基复合材料,采用体积比为100:40的液态改性聚酰亚胺树脂与市售球形铝粉进行均匀混合配制底漆,其中铝粉粒度为30μm~50μm;采用室温气体喷枪将配制好的底漆均匀喷涂在聚酰亚胺复合材料导流叶片表面,室温固化2h后获得厚度为30μm打底层;采用粒径165μm(100目)的刚玉砂,在0.3mpa的压力下对打底层表面进行喷砂处理,用压缩气体将工件表面残余砂粒清除后,再进行表面热喷涂涂层制备。中间层采用市售球形纯铝粉末,粒径为30μm~50μm。采用的喷涂工艺为爆炸喷涂,具体工艺参数为:氧燃比为1.0,充枪量30%,基体温度控制在55℃。中间层厚度为50μm,涂层结合强度为20.12mpa。绝缘隔热层采用重量分数4%聚苯酯掺杂的al2o3粉末,粉末粒度满足10~90μm,采用的爆炸工艺参数为:氧燃比为2.0,充枪量60%,基体温度控制在80℃,绝缘隔热层厚度为50μm,绝缘电阻为500mω。选用聚氨酯树脂可剥涂料(牌号:b-66)采用气体喷涂枪整体在支撑体1表面整体喷涂可剥涂料,喷嘴直径2.0mm,喷涂压力0.2mpa,喷涂距离20cm;涂覆层厚度50μm。室温固化24小时。利用五轴数控机床配合小尺寸刀具对涂层表面可剥涂料进行精密加工,找正零件表面起始位置,采用立式铣刀直径0.5mm雕刻金属电阻带,适量过切以确保可剥涂料被切断。手工剥离电阻加热带区可剥涂料,获得电阻加热带喷涂区及可剥涂料区7。采用爆炸喷涂技术制备电阻加热层,喷涂粉末选用nicr粉末和聚苯酯组成的混合粉末,其中聚苯酯重量分数为4%,爆炸喷涂工艺参数为:氧燃比为1.1,充枪量35%,基体温度控制在55℃,电阻加热层厚度为50μm,单位面积电阻为0.1ω/cm2,功率密度为5.3w/cm2采用室温气体喷枪将绝缘导热漆喷涂到涂层表面,其中片状bn质量分数为4%,采用室温固化0.5小时后,即可获得电阻加热涂层。所获得的涂层性能如下:检验项目检验结果电阻4.8ω热功率5.3w/cm2表面稳态温度80℃涂层结合强度20.68mpa实施例2树脂复合材料基体采用碳纤维增强树脂基复合材料,采用体积比为100:50的液态改性聚酰亚胺树脂与市售球形铜粉进行均匀混合配制底漆,其中铜粉粒度为30μm~50μm;采用室温气体喷枪将配制好的底漆均匀喷涂在聚酰亚胺复合材料导流叶片表面,室温固化2h后获得厚度为50μm打底层;采用粒径165μm(100目)的刚玉砂,在0.3mpa的压力下对打底层表面进行喷砂处理,用压缩气体将工件表面残余砂粒清除后,再进行表面热喷涂涂层制备。中间层采用市售球形纯铝粉末,粒径为30μm~50μm。采用的喷涂工艺为爆炸喷涂,具体工艺参数为:氧燃比为1.0,充枪量30%,基体温度控制在55℃。中间层厚度为90μm,涂层结合强度为19.26mpa。绝缘隔热层采用重量分数1%聚苯酯掺杂的al2o3粉末,粉末粒度满足10~90μm,采用的爆炸工艺参数为:氧燃比为2.0,充枪量60%,基体温度控制在80℃,绝缘隔热层厚度为100μm,绝缘电阻为650mω。选用聚氨酯树脂可剥涂料(牌号:b-66)采用气体喷涂枪整体在支撑体1表面整体喷涂可剥涂料,喷嘴直径2.0mm,喷涂压力0.2mpa,喷涂距离20cm;涂覆层厚度50μm。室温固化24小时。利用五轴数控机床配合小尺寸刀具对涂层表面可剥涂料进行精密加工,找正零件表面起始位置,采用立式铣刀直径0.5mm雕刻金属电阻带,适量过切以确保可剥涂料被切断。手工剥离电阻加热带区可剥涂料,获得电阻加热带喷涂区及可剥涂料区7。采用爆炸喷涂技术制备电阻加热层,喷涂粉末选用nicr粉末和聚苯酯组成的混合粉末,其中聚苯酯重量分数为1%,爆炸喷涂工艺参数为:氧燃比为1.1,充枪量35%,基体温度控制在50℃,电阻加热层厚度为20μm,单位面积电阻为0.15ω/cm2,功率密度为3.54w/cm2采用室温气体喷枪将绝缘导热漆喷涂到涂层表面,其中片状bn质量分数为1%,采用室温固化0.5小时后,即可获得电阻加热涂层。所获得的涂层性能如下:检验项目检验结果电阻7.2ω热功率3.54w/cm2表面稳态温度76℃涂层结合强度16.89mpa最后应该说明的是:以上实施例仅用以说明本发明的技术方案,但本发明的保护范围并不局限于此,任何熟悉本领域的技术人员在本发明揭露的技术范围内,可以轻易想到各种等效的修改或者替换,这些修改或者替换都应该涵盖在本发明的保护范围之内。当前第1页1 2 3 

起点商标作为专业知识产权交易平台,可以帮助大家解决很多问题,如果大家想要了解更多知产交易信息请点击 【在线咨询】或添加微信 【19522093243】与客服一对一沟通,为大家解决相关问题。

此文章来源于网络,如有侵权,请联系删除

tips