HI,欢迎来到起点商标网!
24小时服务QQ:2880605093

一种风电叶片前缘防护材料及其制备方法和应用与流程

2021-02-02 16:02:59|294|起点商标网

本发明属于材料技术领域,尤其涉及一种风电叶片前缘防护材料及其制备方法和应用。



背景技术:

目前,风电叶片在运行过程中,由于受到风沙、雨蚀、昆虫冲击等影响,在运转过程中,风电叶片前缘防护材料被逐步破坏,一般情况下,条件恶劣的风场,叶片前缘防护材料会在3-5年后失效,从而导致叶片前缘玻璃钢失去保护而受到严重影响,严重时会导致叶片前缘结构性破坏。而海上叶片由于复杂的环境条件,叶片前缘防护材料破坏更为严重,而海上风场叶片高昂的维修成本,严重影响海上风电发展。其次,叶片前缘被破坏,会导致叶片前缘气动变化,影响叶片发电效率。因此,开发具有自愈能力的前缘防护材料,延长叶片前缘防护材料寿命、降低叶片维修成本、提升叶片发电效率是目前亟待解决的技术问题。



技术实现要素:

本发明所要解决的技术问题是,克服以上背景技术中提到的不足和缺陷,提供一种具有自愈功能的风电叶片前缘防护材料及其制备方法和应用,延长叶片前缘防护材料寿命。

为解决上述技术问题,本发明提出的技术方案为:一种风电叶片前缘防护材料的制备方法,包括下述的步骤:将a组分、b组分和c组分混合、涂覆到叶片前缘区域,然后固化得到聚氨酯材料,形成所述风电叶片前缘防护材料;

所述a组分由包括多元醇、催化剂和填料在内的原料经脱水制得;所述b组分为端异氰酸酯预聚体,其由聚醚或聚酯多元醇经脱水,然后与多异氰酸酯反应制得;所述c组分由下述组分按质量份计混合得到:异氰酸酯为芯材的聚脲微胶囊50-80份和多元醇为芯材的聚脲微胶囊10-50份。

进一步的,所述a组分的制备原料按质量分数计包括:多元醇40-60份、聚氧化丙烯三醇3-10份、丁二醇3-7份、催化剂0.01-0.05份、二氧化硅填料3-7份和二氧化钛填料3-7份。

进一步的,所述多元醇为聚环氧丙烷醚二醇、聚四氢呋喃醚二醇或聚己内酯二醇中的一种或两种以上的混合物;所述催化剂为二月桂酸二丁基锡、辛酸亚锡或三亚乙基二胺中的一种或两种以上的混合物。

进一步的,所述a组分制备过程中脱水反应条件为100~130℃,脱水2~3个小时。

进一步的,所述b组分制备过程中脱水条件为在100-120℃下,保持真空度在0.09~0.1mpa,脱水1.5-2.5h。

进一步的,所述b组分制备过程中与多异氰酸酯反应条件为70-90℃下恒温反应1.5-2.5h,制得游离nco%含量在13%~15%之间的端异氰酸酯预聚体。

进一步的,所述c组分中微胶囊粒径为10~100μm,异氰酸酯为芯材的聚脲微胶囊中的异氰酸酯为异佛尔酮二异氰酸酯和/或二环己基甲烷二异氰酸酯,多元醇为芯材的聚脲微胶囊中的多元醇为低分子量的聚环氧丙烷醚二醇、聚四氢呋喃醚二醇或聚己内酯二醇中的一种或两种以上。

进一步的,所述c组分中微胶囊粒的制备方法为:将含己二胺的水相和含乳化分散剂的油相混合乳化,然后加入含高反应活性甲苯二异氰酸酯和芯材的油相搅拌反应。

本发明提供的一种风电叶片前缘防护材料,包括聚氨酯材料和分散在聚氨酯材料中的异氰酸酯为芯材的聚脲微胶囊和多元醇为芯材的聚脲微胶囊,所述聚氨酯材料由上述的a组分和b组分制备而成。

本发明还提供一种所述方法制备得到的防护材料在风电叶片中的应用。

与现有技术相比,本发明的有益效果为:

本发明的前缘防护材料常规性能优异,如附着力、耐腐蚀、耐油、耐老化性能好,可满足风电叶片技术要求,同时该材料具有自愈功能,在受到雨蚀等因素影响产生裂纹时,分散在材料中的自愈体系异氰酸酯微胶囊和多元醇微胶囊将发生破裂,释放的异氰酸酯和多元醇将发生反应,从而自动修复裂纹,恢复材料的性能,可显著提升叶片前缘防护能力,延长材料使用寿命,降低叶片维修成本和提升机组发电效率,可应用于风电叶片特别是海上风电叶片。本发明将具有自愈组分的微胶囊,分散在前缘防护材料中,制作简单。

具体实施方式

为了便于理解本发明,下文将结合较佳的实施例对本发明做更全面、细致地描述,但本发明的保护范围并不限于以下具体实施例。

除非另有定义,下文中所使用的所有专业术语与本领域技术人员通常理解含义相同。本文中所使用的专业术语只是为了描述具体实施例的目的,并不是旨在限制本发明的保护范围。

除非另有特别说明,本发明中用到的各种原材料、试剂、仪器和设备等均可通过市场购买得到或者可通过现有方法制备得到。

本发明的风电叶片前缘防护材料由a、b、c组分组成,其中a组分为多元醇组分、b组分为端异氰酸酯组分、c组分为自愈组分。

a组分的制备原料按质量分数计包括:多元醇40-60份、聚氧化丙烯三醇3-10份、丁二醇3-7份、催化剂0.01-0.05份、二氧化硅填料3-7份、二氧化钛填料3-7份。

其中,多元醇为聚环氧丙烷醚二醇、聚四氢呋喃醚二醇、聚己内酯二醇中的一种或它们的混合物(羟值112mgkoh/g)。丁二醇为1,3丁二醇、1,4丁二醇中的一种或它们的混合物。催化剂为二月桂酸二丁基锡、辛酸亚锡、三亚乙基二胺中的一种或它们的混合物。

二氧化硅填料作为抗紫外老化、增强材料和调节a组分粘度,二氧化钛填料为抗紫外老化、颜料。

a组分的制备方法为:将计量好的各组分原料,放入反应器中,100~130℃条件下脱水2~3个小时,降温至常温制得a组分。

b组分的制备方法为:以重量百分计,将100份聚醚或聚酯多元醇加入反应器,在100-120℃下保持真空度在0.09~0.1mpa条件下,脱水1.5-2.5h;然后冷却降温,加入100~150份多异氰酸酯,70-90℃条件下恒温反应1.5-2.5h,冷却出料,制得游离nco%含量在13%~15%之间的端异氰酸酯预聚体。

b组分在制备过程中,羟基与多异氰酸酯反应得到氨基甲酸酯,即得到端异氰酸酯预聚体。

其中,聚醚或聚酯多元醇可以选用羟值为112mgkoh/g的聚环氧丙烷醚二醇、聚四氢呋喃醚二醇、聚己内酯二醇中的一种或它们的混合物。多异氰酸酯可以选用纯mdi、碳化二亚胺改性mdi(lmdi)中的一种或它们的混合物。

c组分由按质量分数计下述组分混合得到:异氰酸酯为芯材的聚脲微胶囊50-80份,微胶囊粒径为10~100μm;多元醇为芯材的聚脲微胶囊10-50份,微胶囊粒径为10~100μm。

其中,多元醇可以为:低分子量(400-2000)的聚环氧丙烷醚二醇、聚四氢呋喃醚二醇、聚己内酯二醇中的一种或它们的混合物。异氰酸酯可以为异佛尔酮二异氰酸酯(ipdi)和/或二环己基甲烷二异氰酸酯(hmdi)。

在下述实施例中,采用界面聚合反应制备多元醇为芯材的聚脲微胶囊,反应过程为:(1)将己二胺(水相)、聚醋酸乙烯酯乳化分散剂(油相-甲苯)混合乳化;(2)在上述混合液中加入含高反应活性甲苯二异氰酸酯的甲苯溶液(油相)、低分子量多元醇(囊心),搅拌反应得到聚脲微胶囊。己二胺与高反应活性甲苯二异氰酸酯反应得到聚脲。

在下述实施例中,采用界面聚合反应制备异氰酸酯为芯材的聚脲微胶囊,反应过程为:(1)将已二胺(水相)、聚醋酸乙烯酯乳化分散剂(油相-甲苯)混合乳化;(2)在上述混合液中加入含高反应活性甲苯二异氰酸酯、异佛尔酮二异氰酸酯(囊心)的甲苯溶液(油相),搅拌反应得到聚脲微胶囊。

本发明微胶囊分散在聚氨酯材料中,当聚氨酯材料产生微裂纹,当裂缝传播通过微胶囊时,异氰酸酯、多元醇被释放到裂缝平面中,在此处它们发生反应并聚合,使得材料被修复。由于愈合只需要裂纹扩展即可作为愈合机制的触发,因此最终得到的聚氨酯材料的防护能力得到显著提升。

本发明的风电叶片前缘防护材料按质量分数计包含:a组分50-80份、b组分50-80份、c组分5-20份。a、b、c按照比例加入容器中,在搅拌均匀后,采用喷涂、滚涂、刮涂等方式,将混合料涂覆到叶片前缘区域,控制湿膜厚度250-400微米,在80℃固化5-10h,在风电叶片前缘形成一层防护材料。

在固化过程中,a组分中的多元醇组分,作为聚氨酯软段(提高弹性)提供羟基,在催化剂作用下与b组分中的异氰酸酯组分(作为固化剂)反应得到聚氨酯材料。b组分作为聚氨酯硬段成分,提高聚氨酯强度(比如拉伸强度)、刚度。

实施例1

本实施例的风电叶片前缘防护材料,其制备方法为:

(1)a组分,按质量分数计:聚环氧丙烷醚二醇(羟值112mgkoh/g)40份、聚氧化丙烯三醇3份、1,3丁二醇3份、二月桂酸二丁基锡0.01份、二氧化硅填料3份、二氧化钛填料3份。将计量好的各组分原料,放入反应器中,100℃条件下脱水2个小时,降温至40℃制得a组分。

(2)b组分的制备方法为,以重量百分计,将100份羟值为112mgkoh/g的聚环氧丙烷醚二醇加入反应器,在110℃下保持真空度在0.09~0.1mpa条件下,脱水2h;然后冷却降温,加入100份纯mdi(二苯基甲烷二异氰酸酯),80℃条件下恒温反应2h,冷却出料,制得游离nco%含量13%的端异氰酸酯预聚体。

(3)c组分,按质量分数计:异氰酸酯为芯材的聚脲微胶囊50份、多元醇为芯材的聚脲微胶囊40份。

(4)按质量分数计将a组分50份、b组分50份、c组分5份,混合均匀后采用刮涂工艺,将混合料涂覆到叶片前缘区域,控制湿膜厚度300-400微米,在80℃固化6h,在风电叶片前缘形成一层防护材料。

实施例2

本实施例的风电叶片前缘防护材料,其制备方法为:

(1)a组分,按质量分数计:聚四氢呋喃醚二醇(羟值112mgkoh/g)60份、聚氧化丙烯三醇10份、1,4丁二醇7份、辛酸亚锡0.05份、二氧化硅填料7份、二氧化钛填料7份。将计量好的各组分原料,放入反应器中,130℃条件下脱水2个小时,降温至60℃制得a组分。

(2)b组分的制备方法为,以重量百分计,将100份羟值为112mgkoh/g的聚四氢呋喃醚二醇加入反应器,在110℃下保持真空度在0.09~0.1mpa条件下,脱水2h;然后冷却降温,加入150份碳化二亚胺改性mdi(lmdi),80℃条件下恒温反应2h,冷却出料,制得游离nco%含量15%的端异氰酸酯预聚体。

(3)c组分,按质量分数计:异氰酸酯为芯材的聚脲微胶囊80份、多元醇为芯材的聚脲微胶囊40份。

(4)按质量分数计将a组分80份、b组分80份、c组分20份,混合均匀后采用刮涂工艺,将混合料涂覆到叶片前缘区域,控制湿膜厚度300-400微米,在80℃固化6h,在风电叶片前缘形成一层防护材料。

实施例3

本实施例的风电叶片前缘防护材料,其制备方法为:

(1)a组分,按质量分数计:多元醇50份、聚氧化丙烯三醇5份、丁二醇5份、催化剂0.03份、二氧化硅填料5份、二氧化钛填料5份。将计量好的各组分原料,放入反应器中,120℃条件下脱水2个小时,降温至50℃制得a组分。其中多元醇为聚环氧丙烷醚二醇、聚四氢呋喃醚二醇、聚己内酯二醇中的混合物(混合质量比例为1:1:1,羟值112mgkoh/g),丁二醇为1,3丁二醇、1,4丁二醇中的混合物,混合质量比例为1:1。催化剂为二月桂酸二丁基锡、辛酸亚锡、三亚乙基二胺中的混合物,混合质量比例为1:1:1。

(2)b组分的制备方法为,以重量百分计,将100份聚醚或聚酯多元醇加入反应器,在110℃下保持真空度在0.09~0.1mpa条件下,脱水2h;然后冷却降温,加入120份多异氰酸酯,80℃条件下恒温反应2h,冷却出料,制得游离nco%含量15%的端异氰酸酯预聚体。其中聚醚或聚酯多元醇选用羟值为112mgkoh/g的聚环氧丙烷醚二醇、聚四氢呋喃醚二醇、聚己内酯二醇的混合物,混合质量比例为1:1:1。多异氰酸酯选用纯mdi、碳化二亚胺改性mdi(lmdi)中的一种或它们的混合物,混合质量比例为2:1。

(3)c组分,按质量分数计:异氰酸酯为芯材的聚脲微胶囊60份、多元醇为芯材的聚脲微胶囊30份。

(4)按质量分数计将a组分65份、b组分60份、c组分15份,混合均匀后采用刮涂工艺,将混合料涂覆到叶片前缘区域,控制湿膜厚度300-400微米,在80℃固化6h,在风电叶片前缘形成一层防护材料。

对比例

本对比例的风电叶片前缘防护材料,其制备方法为:

(1)a组分,按质量分数计:聚环氧丙烷醚二醇(羟值112mgkoh/g)40份、聚氧化丙烯三醇3份、1,3丁二醇3份、二月桂酸二丁基锡0.01份、二氧化硅填料3份、二氧化钛填料3份。将计量好的各组分原料,放入反应器中,100℃条件下脱水2个小时,降温至40℃制得a组分。

(2)b组分的制备方法为,以重量百分计,将100份羟值为112mgkoh/g的聚环氧丙烷醚二醇加入反应器,在110℃下保持真空度在0.09~0.1mpa条件下,脱水2h;然后冷却降温,加入100份纯mdi(二苯基甲烷二异氰酸酯),80℃条件下恒温反应2h,冷却出料,制得游离nco%含量13%的端异氰酸酯预聚体。

(4)按质量分数计将a组分50份、b组分50份,混合均匀后采用刮涂工艺,将混合料涂覆到叶片前缘区域,控制湿膜厚度300-400微米,在80℃固化6h,在风电叶片前缘形成一层防护材料。

将实施例和对比例制备的材料进行雨蚀能力测试(astmg73-10,雨蚀试验环境:雨滴大小为1-2mm,最大线速度160m/s,降雨强度30-35mm/h),所有样品在测试前,经紫外老化2000h。各性能测试结果如表1。

表1

由上述实施例和对比例可以看出,本发明中a与b组分反应得到聚氨酯材料,该配方制备的材料抗雨蚀能力较普通油漆有明显提升,在a、b、c组分反应得到聚氨酯材料,由于该材料具有自修复能力,故抗雨蚀能力有进一步提升。本发明中聚氨酯材料与常规聚氨酯油漆相比较,a组分的聚氨酯软段提高材料的弹性,从而断裂伸长率提高。

上述只是本发明的较佳实施例,并非对本发明作任何形式上的限制。因此,凡是未脱离本发明技术方案的内容,依据本发明技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均应落在本发明技术方案保护的范围内。

起点商标作为专业知识产权交易平台,可以帮助大家解决很多问题,如果大家想要了解更多知产交易信息请点击 【在线咨询】或添加微信 【19522093243】与客服一对一沟通,为大家解决相关问题。

此文章来源于网络,如有侵权,请联系删除

tips