隔热结构的制作方法
本发明涉及一种隔热结构,特别是涉及一种可应用在各种需兼顾可视性与隔热效果的环境的隔热结构。
背景技术:
受到全球暖化的影响,隔热节能的需求日渐增加。举例来说,当太阳光穿透玻璃窗进入到室内时,太阳光中的红外线会导致室内温度升高,如此便需要利用通风或降温装置来减少高温不适感;根据统计结果,在夏天经由玻璃窗进入室内的太阳辐射明显增加了空调的能耗。由此可知,建筑物的玻璃窗的隔热性能对室内温度的影响很大。类似地,车用玻璃的隔热性能,也是影响车内温度的主要因素之一。
目前常见的隔热方式,不外乎是在目标物上设置金属反射层或染色层,金属反射层虽然可以将红外线和紫外线反射,但相关产品会产生光害;另外,染色层虽然可以吸收红外线,但其隔热效果不佳且容易褪色。此外,也有一种隔热方式,是利用金属镀层(如银镀层)搭配介电层来形成多层薄膜结构,其可以通过光干涉作用达到选择性让可见光穿透并阻隔红外线的效果;然而,此种方式的设备投资大、原料成本高且产品良率偏低。
随着现代建筑物大量采用玻璃窗和玻璃外观(如玻璃帷幕),以及汽车使用率的快速成长,开发新的高性能隔热材料成为了一项十分重要且迫切的课题。
技术实现要素:
本发明所要解决的技术问题在于,针对现有技术的不足提供一种至少具有高透光率和高红外线阻隔率隔热结构。
为了解决上述的技术问题,本发明所采用的其中一技术方案是,提供一种隔热结构,其包括一基材以及一红外线阻隔层。所述基材具有相对的一第一表面以及一第二表面,所述红外线阻隔层设置于所述基材的所述第一表面上,且所述红外线阻隔层中具有均匀分布的多个复合氧化钨粒子。所述复合氧化钨粒子具有以下通式:csxmywo3-znc;其中cs表示铯;m表示锡(sn)、锑(sb)或铋(bi);w表示钨;o表示氧;n表示氟(f)或溴(br);其中x、y、z、c均为正数,且符合以下条件:x≦1.0;y≦1.0;y/x≦1.0;z≦0.6;及c≦0.1。
更进一步地,所述复合氧化钨粒子的平均粒径为10nm至90nm,且所述复合氧化钨粒子占所述红外线阻隔层总重量的5%至25%。
更进一步地,所述基材的厚度为23μm至125μm,所述红外线阻隔层的厚度为1μm至10μm。
更进一步地,所述基材为聚酯树脂所形成,所述红外线阻隔层为基于紫外线固化型树脂的材料所形成。
更进一步地,所述隔热结构还包括一接合层,其设置于所述基材的所述第二表面上。
更进一步地,所述接合层中具有一紫外线吸收材料。
更进一步地,所述接合层的厚度为3μm至20μm。
更进一步地,所述接合层为压克力系感压胶所形成。
更进一步地,所述红外线阻隔层依jisk7705测试标准所测得的可见光穿透率至少为70%,所述红外线阻隔层依jisr3106测试标准所测得的红外线阻隔率至少为90%。
为了解决上述的技术问题,本发明所采用的另外一技术方案是,提供一种隔热结构,其包括一第一玻璃基材、一第二玻璃基材以及一红外线阻隔层。所述第一玻璃基材与所述第二玻璃基材的位置相对应,所述红外线阻隔层设置于所述第一玻璃基材与所述第二玻璃基材之间,且所述红外线阻隔层中具有均匀分布的多个复合氧化钨粒子。所述复合氧化钨粒子具有以下通式:csxmywo3-znc;其中cs表示铯;m表示锡(sn)、锑(sb)或铋(bi);w表示钨;o表示氧;n表示氟(f)或溴(br);其中x、y、z、c均为正数,且符合以下条件:x≦1.0;y≦1.0;y/x≦1.0;z≦0.6;及c≦0.1。
本发明的其中一有益效果在于,本发明的隔热结构,其能通过“红外线阻隔层设置于基材的第一表面上,且红外线阻隔层中具有均匀分布的多个复合氧化钨粒子,其中氧化钨掺杂特定的金属和非金属元素”以及“红外线阻隔层设置于第一玻璃基材与第二玻璃基材之间,且红外线阻隔层中具有均匀分布的多个复合氧化钨粒子,其中氧化钨掺杂特定的金属和非金属元素”的技术方案,以满足隔热产品对于高隔热性和足够的可视性的应用需求;隔热结构的红外线阻隔层的可见光穿透率至少为70%,且红外线阻隔率可达99%。
为使能更进一步了解本发明的特征及技术内容,请参阅以下有关本发明的详细说明与附图,然而所提供的附图仅用于提供参考与说明,并非用来对本发明加以限制。
附图说明
图1为本发明第一实施例的隔热结构的其中一结构示意图。
图2为本发明第一实施例的隔热结构的另外一结构示意图。
图3为本发明第二实施例的隔热结构的其中一结构示意图。
图4为本发明第二实施例的隔热结构的另外一结构示意图。
图5为本发明第三实施例的隔热结构的其中一结构示意图。
图6为本发明第三实施例的隔热结构的另外一结构示意图。
具体实施方式
以下是通过特定的具体实施例来说明本发明所公开有关“隔热结构”的实施方式,本领域技术人员可由本说明书所公开的内容了解本发明的优点与效果。本发明可通过其他不同的具体实施例加以施行或应用,本说明书中的各项细节也可基于不同观点与应用,在不悖离本发明的构思下进行各种修改与变更。另外,本发明的附图仅为简单示意说明,并非依实际尺寸的描绘,事先声明。以下的实施方式将进一步详细说明本发明的相关技术内容,但所公开的内容并非用以限制本发明的保护范围。
应当可以理解的是,虽然本文中可能会使用到“第一”、“第二”、“第三”等术语来描述各种组件或者信号,但这些组件或者信号不应受这些术语的限制。这些术语主要是用以区分一组件与另一组件,或者一信号与另一信号。另外,本文中所使用的术语“或”,应视实际情况可能包括相关联的列出项目中的任一个或者多个的组合。
[第一实施例]
参阅图1所示,本发明第一实施例提供一种隔热结构z,其主要包括一基材1及一红外线阻隔层2。基材1具有相对的一第一表面11(如上表面)及一第二表面12(如下表面),红外线阻隔层2设置于基材1的第一表面11上,其中红外线阻隔层2中具有均匀分布的多个复合氧化钨粒子p。
使用时,可将隔热结构z接合于一需兼顾可视性与隔热效果的目标物(未显示)的表面上,以通过红外线阻隔层2阻隔红外线并让可见光穿透;目标物例如为建筑物的玻璃窗和玻璃外观、汽车的前、后挡风玻璃和左右两侧车窗玻璃。借此,可降低太阳照射对室内环境造成的升温影响,进而可减少能耗。
进一步而言,基材1用以将红外线阻隔层2转移到目标物所在的位置,基材1具有可挠性且可对红外线阻隔层2提供良好的支撑,以达到预期的隔热效果。在本实施例中,基材1可为一高透光性的塑料基材,其较佳为聚酯树脂所形成;基材1的厚度可为23μm至125μm,较佳为23μm至75μm。聚酯树脂可举出:聚对苯二甲酸乙二酯膜(pet)、聚萘二甲酸乙二醇脂(pen)、聚氯乙烯(pvc)、聚碳酸酯(pc)、聚丙烯(pp)、聚碳酸酯(pc)、聚乙烯(pe)及尼龙(nylon)。需要说明的是,在其他实施例中,基材1可为一玻璃基材,且其厚度可根据实际需要而改变。
红外线阻隔层2以连续层的形式存在,其主要含有多个复合氧化钨粒子及一成型树脂;于制作时,可先将多个复合氧化钨粒子p分散于成型树脂中,再进行成型加工。在本实施例中,复合氧化钨粒子p具有以下通式:csxmywo3-znc;其中cs表示铯;m表示锡(sn)、锑(sb)或铋(bi);w表示钨;o表示氧;n表示氟(f)或溴(br);其中x、y、z、c均为正数,且符合以下条件:x≦1.0;y≦1.0;y/x≦1.0;z≦0.6;及c≦0.1。另外,成型树脂可为紫外线硬化树脂,其可举出丙烯酸树脂及不同官能基改性的丙烯酸树脂。需要说明的是,在其他实施例中,根据实际需要,红外线阻隔层2可以图案层的形式存在。
考虑到红外线阻隔层2的制造成本与隔热效率,红外线阻隔层2的厚度可为1μm至10μm,其中复合氧化钨粒子p的平均粒径可为10nm至90nm,且复合氧化钨粒子p占红外线阻隔层2总重量的5%至25%。值得注意的是,复合氧化钨粒子p中掺杂的特定金属元素可弥补氧化钨吸收红外线能力的不足,例如可提高波长范围在850nm至2500nm的红外线的吸收效果,掺杂的特定非金属元素可提高红外线阻隔层2的耐候性。
红外线阻隔层2的制作方法可包括以下步骤:
制备一隔热粒子分散液(或称隔热粒子浆料),隔热粒子分散液可包含多个具有前述通式的复合氧化钨粒子p(购自南亚塑料股份有限公司)、一溶剂及一分散剂,其中多个复合氧化钨粒子p通过分散剂而均匀分散在溶剂中。根据实际需要,可对隔热粒子分散液进行湿式研磨,使复合氧化钨粒子p具有特定的粒径,且隔热粒子分散液可具有适当的黏度为50cps至200cps。
溶剂可为乙酸乙酯、丁酮与丙二醇甲醚丙酸酯的混合溶剂;分散剂可选自阴离子型、非离子型及高分子分散剂中的至少一种,其中以高分子分散剂为佳,原因在于高分子分散剂具有锚固基团。阴离子型分散剂可为丙烯酸类阴离子型分散剂,其可举出聚丙烯酸铵(共)聚合物、聚丙烯酸钠(共)聚合物、苯乙烯-丙烯酸(共)聚合物及羧酸钠盐共聚合物;非离子型分散剂可举出脂肪醇乙氧基化合物及聚氧乙烯烷基醚;高分子分散剂可举出聚羧酸酯、磺酸型聚酯多元醇、聚磷酸酯、聚胺酯及改性聚丙烯酸酯类聚合物。然而,上述所举的例子只是其中一可行的实施例而并非用以限定本发明。
将隔热粒子分散液与成型树脂混合,并将所得的树脂组合物制成塑料母粒。在此步骤中,可先将隔热粒子分散液与成型树脂的原料单体混合,再以适当的反应条件(如温度、压力、时间及催化剂)使原料单体发生聚合反应,然后将所得的树脂组合物进行加热熔融、冷却及切粒。
使用塑料母粒进行成型加工,即得到红外线阻隔层2。在此步骤中,是以塑料母粒为原料,在适当的成型条件(如紫外线照射)下加工成均匀连续的膜层,且视需要可再对此膜层进行后加工(如双轴拉伸),使其具有所需的机械特性。值得注意的是,红外线阻隔层2依jisk7705测试标准所测得的可见光穿透率至少为70%,红外线阻隔层2依jisr3106测试标准所测得的红外线阻隔率至少为90%(可达99%);此外,红外线阻隔层2具有优异的耐候性。
可见光穿透率(vlt%)测试:采用日商tokyodenshoku的测试装置(型号为tc-hiiidpk),依jisk7705测试标准,测试红外线阻隔层2的可见光穿透率;可见光穿透率越高,代表红外线阻隔层2的透明性越佳。
红外线(ircut%)阻隔率测试:采用日商hoya的测试装置(型号为lt-3000),依jisr3106测试标准,测试红外线阻隔层2的红外线通过率,再以100%减去所测得的红外线通过率即为测试红外线阻隔层2的红外线阻隔率;红外线阻隔率愈高,代表测试红外线阻隔层2的隔热效果越佳。
耐候性试验:采用atlasmaterialtestingtechnology的测试装置,测试条件包括:灯管波长:uvb313nm;温度:50-60℃;试验时间1000小时,其中每周期照射4小时,接着蒸湿4小时;照射能量:0.71w/m2。完成之后以分光仪测量红外线阻隔层2的变色值(de);de值越小,代表耐候(光)越佳。
参阅图2所示,隔热结构z还可包括一接合层3,其设置于基材1的第二表面12上,且以连续层的形式存在;使用时,隔热结构z可通过接合层3贴附至目标物上。在本实施例中,接合层3的材料为压克力系感压胶,接合层3的厚度可为3μm至20μm;借此,接合层3可提供防爆功能。此外,考虑到使用性,接合层3的表面可具有一暂时性覆盖层4,其可防止接合层3的表面接触到脏污,而导致接合力下降;暂时性覆盖层4可在隔热结构z要与目标物结合之前,再从接合层3的表面上移除。暂时性覆盖层4的材料没有特别的限制,只要能稳定附着于接合层3的表面上即可。
[第二实施例]
参阅图3及图4所示,本发明第二实施例提供一种隔热结构z,其主要包括一基材1、一红外线阻隔层2及一接合层3。基材1具有相对的一第一表面11及一第二表面12,红外线阻隔层2设置于基材1的第一表面11上,其中红外线阻隔层2中具有均匀分布的多个复合氧化钨粒子p,接合层3设置于基材1的第二表面12上,其中接合层3中具有一紫外线吸收材料m。借此,隔热结构z可具有阻隔紫外线的能力。
承上所述,本实施例与第一实施例的主要差异在于:接合层3中具有一紫外线吸收材料m;进一步而言,可先将紫外线吸收材料m混入压克力系感压胶,再进行成型加工,以形成具有阻隔紫外线的能力的接合层3。紫外线吸收材料m可选自镍猝灭剂类、草酰苯胺类、苯并三唑类、苯甲酸脂类及二苯甲酮类,但不限于此。关于本实施例的隔热结构z的其他实施细节,可参考第一实施例所述,在此不再加以赘述。
[第三实施例]
参阅图5所示,本发明第三实施例提供一种隔热结构z,其主要包括一第一玻璃基材1、一第二玻璃基材1及一红外线阻隔层2。第一玻璃基材1与第二玻璃基材1位置相对应,红外线阻隔层2设置于第一玻璃基材1与第二玻璃基材1之间,且红外线阻隔层2中具有均匀分布的多个复合氧化钨粒子p。第一玻璃基材1与第二玻璃基材1各可为一浮法玻璃或强化玻璃板,其厚度可为3mm至12mm,但本发明不限于此。关于红外线阻隔层2的技术细节,可参考第一实施例所述,在此不再加以赘述。
使用时,第一玻璃基材1的外表面可处在室外环境中,且可受到太阳光的直接照射,第二玻璃基材1的外表面可处在室内环境中,红外线阻隔层2则连接于第一玻璃基材1与第二玻璃基材1的内表面之间。借此,当太阳光照射到第一玻璃基材1时,由于红外线难以穿透红外线阻隔层2传递到第二玻璃基材1,可降低太阳照射对室内环境造成的升温影响,进而可减少能耗。
参阅图6所示,隔热结构z视需要还可包括一具有紫外线阻隔能力的接合层3,其设置于红外线阻隔层2与第二玻璃基材1之间,且具有一紫外线吸收材料m。关于接合层3的技术细节,可参考第二实施例所述,在此不再加以赘述。
[实施例的有益效果]
本发明的其中一有益效果在于,本发明的隔热结构,其能通过“红外线阻隔层设置于基材的第一表面上,且红外线阻隔层中具有均匀分布的多个复合氧化钨粒子,其中氧化钨掺杂特定的金属和非金属元素”以及“红外线阻隔层设置于第一玻璃基材与第二玻璃基材之间,且红外线阻隔层中具有均匀分布的多个复合氧化钨粒子,其中氧化钨掺杂特定的金属和非金属元素”的技术方案,以满足隔热产品对于高隔热性和足够的可视性的应用需求;隔热结构的红外线阻隔层的可见光穿透率至少为70%,且红外线阻隔率可达99%。
更进一步地说,隔热结构还包括一设置于基材的第二表面上的接合层,接合层的材料为压克力系感压胶,且具有一紫外线吸收材料。借此,隔热结构在应用上可具有阻隔紫外线及防爆的能力。
综上所述,本发明的隔热结构可在强烈太阳光的照射下,减少外界环境对室内温度的影响,对节能减碳有很大的贡献。
以上所公开的内容仅为本发明的优选可行实施例,并非因此局限本发明的权利要求书的保护范围,所以凡是运用本发明说明书及附图内容所做的等效技术变化,均包含于本发明的权利要求书的保护范围内。
起点商标作为专业知识产权交易平台,可以帮助大家解决很多问题,如果大家想要了解更多知产交易信息请点击 【在线咨询】或添加微信 【19522093243】与客服一对一沟通,为大家解决相关问题。
此文章来源于网络,如有侵权,请联系删除