一种卵黄高磷蛋白源钙螯合肽及其肽钙螯合物与应用的制作方法
2021-02-02 13:02:52|427|起点商标网
:
[0001]
本发明属于生物小分子活性肽领域,具体涉及一种来源于卵黄高磷蛋白的钙螯合肽及其肽钙螯合物和应用。
背景技术:
:
[0002]
钙是人体必需的主要元素,约占体重的1.5%~2.2%。大约99%的钙以磷酸钙的形式存在于骨骼中,磷酸钙在保持骨骼强度方面发挥着关键作用。此外,钙被称为信号传递的第二信使,在维持人体正常的生理功能如神经传导、肌肉收缩和血液凝固等方面发挥着重要作用。当体内钙含量过低时,会导致低钙血症,症状包括手指和脚趾麻木、肌肉痉挛、易怒、智力受损和肌肉痉挛。
[0003]
目前市场上的钙补充剂主要有无机钙、有机酸钙和氨基酸钙络合物。然而,这些钙补充剂都有一些缺陷。例如,无机钙的吸收和生物利用度很低,有机钙显示低浓度的钙和使用限制,氨基酸钙复合物尚未广泛使用,因为它成本高,容易导致脂肪氧化。与氨基酸相比,小肽的吸附具有能耗低、传输速度快、载体不易饱和等优点。肽与钙形成可溶性肽—钙复合物,提高其吸附和生物利用度,成为当前研究的热点。
[0004]
卵黄高磷蛋白(phosvitin,pv)是从蛋黄中提取的一种含磷蛋白。pv及其水解产物富含磷酸丝氨酸残基,具有良好的促进生物矿化功能,因此得到了广泛的研究。近年来发现了多种参与生物矿化的磷酸化蛋白,如牙本质磷蛋白、骨涎蛋白、骨桥蛋白等。这些蛋白有一些共同的特性:大多数是高磷酸化的酸性蛋白,富含谷氨酸、天冬氨酸和磷酸化的丝氨酸/苏氨酸(p-ser/thr)残基,具有很强的钙离子结合能力。pv是自然界磷酸化程度最高的蛋白质,能与大量钙离子结合且亲和力强,但其结合位点和作用机制尚不清楚,限制了其作为钙补充剂产品的应用。pv可以被酶解成小分子的肽,从而暴露活性中心。因此,分离制备出卵黄蛋白水解产物中的钙螯合肽,对于磷酸化蛋白调控生物矿化的基础理论研究具有重要的学术意义,能为钙补充剂开发新的蛋白源,并对禽蛋深加工领域做出重要贡献。
技术实现要素:
:
[0005]
目前市面上的补钙产品中,钙螯合肽的蛋白源的种类有限,产品单一。本发明的目的是提供一种卵黄高磷蛋白来源的钙螯合肽,并以此制备肽钙螯合物,以丰富补钙剂种类,探索禽蛋的高值化利用和新型肽-钙产品的开发。
[0006]
本发明提供的技术方案之一,是一种来自卵黄高磷蛋白的钙螯合肽,所述钙螯合肽由九个氨基酸组成,序列为deeendqvk(即,asp glu glu glu asn asp gln val lys)。
[0007]
本发明还提供上述钙螯合肽的制备方法,可以通过人工化学合成制备,如采用化学固相合成法按照本领域常规技术人工合成;也可以从蛋黄液中提取卵黄高磷蛋白,经蛋白酶解、阴离子交换色谱柱分离纯化后收集钙离子结合能力最强的洗脱峰,再经sephadex g-15凝胶过滤层析、c18反相色谱柱纯化等步骤获得。
[0008]
本发明还提供上述卵黄高磷蛋白来源的钙螯合肽在制备降血压药物、保健品、食
品、化妆品、日化用品中的应用,如其可以作为添加剂或者活性药物添加至食品、医药、保健品、化妆品、营养强化剂、日化用品等多种行业和领域,具有广阔的应用开发前景。
[0009]
本发明还提供上述钙螯合肽在制备肽钙螯合物中的应用。
[0010]
本发明还提供上述钙螯合肽制备的肽钙螯合物,制备方法为,将上述钙螯合肽和钙源在水中进行螯合反应,所述螯合反应的参数设置:肽钙比为0.1~0.8(g/mmol),螯合温度30~70℃,螯合时间10~90min,ph 5.5~9.0。
[0011]
本发明还提供上述肽钙螯合物在作为钙补充剂中的应用。
[0012]
有益效果:
[0013]
(1)本发明中肽链与钙离子结合的主要原因是氨基酸序列中含有大量的酸性氨基酸,其上的游离羧基可与钙离子形成配位键,同时游离的氨基也参与了反应,形成可溶性络合物,阻止钙离子沉淀,增加小肠对钙吸收及其在体内蓄积。
[0014]
(2)本发明提供的钙螯合肽deeendqvk在制备肽钙螯合物时,具有较高的钙结合率和螯合肽钙得率,合成肽钙结合率为97.00
±
1.42%,螯合肽钙得率为87.76
±
1.91%,钙离子螯合量为151.10
±
3.57mg/g。
[0015]
(3)本发明提供的肽钙螯合物deeendqvk-ca,消化吸收率和保留率均高于其他有机钙和caco
3
,有利于钙的吸收;有利于促进蛋制品的高值化利用、显著改善人们的缺钙现象。
附图说明:
[0016]
图1实施例1中钙结合肽的分离纯化
[0017]
其中,(a)deae阴离子交换色谱柱上的分离结果;(b)在sephadex g-25凝胶过滤色谱柱上对p3部分的分离;(c)在制备型c18反相高效液相色谱柱上对组分p3-1的分离;
[0018]
图2钙结合肽的特性
[0019]
其中,(a)(c)(e):不同组分对磷酸钙沉淀生成的抑制效果;(b)(d)(f):不同组分的ca
2+
结合能力和肽钙螯合物得率(不同的字母表示两个样本的方差显著(p<0.05));
[0020]
图3实施例1所提取所得钙结合肽样品在lc-esi-ms/ms中的二级质谱图;
[0021]
图4实施例1中钙结合肽deeendqvk的分子结构图;
[0022]
图5固相合成deeendqvk的液相色谱和二级质谱图
[0023]
图6实施例1中肽deeendqvk和肽钙螯合物deeendqvk-ca的扫描电镜图像
[0024]
其中,a、b、c为deeendqvk,d、e、f为肽钙螯合物deeendqvk-ca;
[0025]
图7紫外光谱;
[0026]
图8圆二色谱分析;
[0027]
图9红外光谱分析;
[0028]
图10 1
h nmr分析
[0029]
其中,a:0-5ppm全谱图,b:4-4.9ppm局部放大图,c:1.3-2.5ppm局部放大图;
[0030]
图11模拟肠道环境中钙溶解度和透过率随消化时间的变化情况;
[0031]
图12模拟肠道中钙制剂浓度与钙溶解度和透过率的关系。
具体实施方式:
[0032]
为了使本专利的目的、技术方案及优点更加清楚明白,以下结合具体实施例,对本专利进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本专利,并不用于限定本发明。
[0033]
本发明实施例所涉及的部分实验方法如下:
[0034]
(1)抑制磷酸钙沉淀生成效果的测定
[0035]
配制1mg/ml不同组分的多肽溶液,分别加入40ml的50mm cacl
2
和50mm nah
2
po
4
使其终浓度都为0.008m,即ca
2+
:po
43-=1:1,迅速用0.1m的naoh将反应体系的ph调至7.2,并不断用0.01m的naoh将ph维持在7.2,每2min记录一次naoh的消耗量,直至1h后结束试验。
[0036]
以时间为横坐标,naoh消耗量为纵坐标作图。naoh的累积消耗量越小、消耗速度越慢,说明阻滞磷酸钙沉淀的效果越好。
[0037]
(2)肽钙螯合物得率
[0038]
将冻干肽溶解在0.02mol/l tris-hcl(ph7.8)中,最终浓度为5.0mg/ml,10分钟的震荡确保完全溶解。溶液与50mm cacl
2
混合,在40℃搅拌反应60分钟。根据游离钙与螯合钙的溶解度不同的原理,混合物中加入无水乙醇(9倍溶液体积)用于分离肽钙螯合物。然后,将混合物在4℃下10000g离心15分钟,并用乙醇洗涤沉淀两次,乙醇挥发后,用水溶解沉淀并冻干,即得肽钙螯合物。
[0039]
肽钙螯合物得率(%)=螯合物的质量/(反应物的总质量)
×
100
[0040]
(3)钙结合能力的测定
[0041]
取0.2g肽钙螯合物水溶液(2mg/ml)置于消化管中,用混酸(硝酸:高氯酸,4:1,v/v)消化后,用去离子水定容至50ml,利用原子吸收分光光度计测定钙含量。
[0042]
钙结合能力(%)=(螯合的钙含量/总钙含量)*100
[0043]
以下将通过具体实施例对本发明做进一步的解释说明。
[0044]
实施例1钙螯合肽deeendqvk的获得
[0045]
本发明提供的钙螯合肽deeendqvk可以通过人工化学合成制备,如采用化学固相合成法按照本领域常规技术人工合成;也可以从蛋黄液中提取卵黄高磷蛋白,进一步经经蛋白酶解、分离纯化后等步骤获得。
[0046]
(1)提取卵黄高磷蛋白
[0047]
蛋黄液收集到烧杯中,用同质量的蒸馏水稀释,磁力搅拌混合1h后离心,收集沉淀后,加入同质量的0.17mol/l nacl溶液继续搅拌1h,再次离心收集沉淀,即得蛋黄颗粒。
[0048]
取获得的蛋黄颗粒沉淀,向其添加10倍质量体积比的1.74mol/l nacl溶液,搅拌至完全溶解。调节溶液ph为4.0后,添加3%聚乙二醇(peg6000),4℃下磁力搅拌1h后离心收集上清液,透析后冷冻干燥,即得卵黄高磷蛋白。
[0049]
(2)蛋白酶解
[0050]
将步骤(1)所得卵黄高磷蛋白溶解于0.1mol/l的naoh溶液,在37℃条件下反应3小时以脱去一部分磷。调节ph到8.0,加入胰蛋白酶(e/s=1/50),在37℃下孵育12小时。反应结束时,溶液在100℃下加热5分钟使酶失活,然后在10000g下离心15min取上清液冻干即得卵黄高磷蛋白水解物。
[0051]
(3)分离纯化:采用toyopearl deae-650m阴离子交换色谱填料分离卵黄高磷蛋白
磷酸肽,按照说明书装填层析柱。在akta蛋白纯化仪中纯化组分,使用50mmol/l tris-hcl(ph 7.5)缓冲液进行平衡;取卵黄高磷蛋白水解物水溶液10ml上样,使用离子强度逐渐增强的tris-hcl缓冲液(ph 7.5)进行分步梯度洗脱,流速为3ml/min,在280nm检测紫外吸收,收集洗脱峰p1,p2,p3和p4(如图1-a)并进行磷酸钙沉淀生成的抑制、钙结合能力和螯合物得率分析(如图2-a/b),从图2-a可以看出,与空白组相比,增加pv、ppp和cpp后naoh消耗量均有减少,但cpp和p3的效果最明显,分别为4.11ml、4.40ml。通过测量ca
2+
结合能力和螯合物得率,发现p2,p3和p4的ca
2+
结合能力都高于p1,表明ca
2+
结合能力的差异可能与肽链所携带的负电荷的数量有关,且负电荷越多,结合ca
2+
能力越强。p3和p4在钙结合能力方面表现出不同的趋势,这可能与肽分子量、亲水性基团暴露、氨基酸组成和特定氨基酸基团有关。而p3的ca
2+
结合能力和螯合物产率明显高于其他组分,分别为73.00
±
0.14%和55.00
±
0.26%(图2b)。因此,选择p3进行进一步纯化。
[0052]
采用sephadex g-15凝胶过滤层析(26
×
600mm)对收集的洗脱峰p3进行进一步分离及脱盐处理。上样量10ml,流动相为超纯水,流速为1ml/min,280nm监控吸光度值,同时使用电导率仪测定电导率,收集蛋白峰p3-1和p3-2(如图1-b)并进行磷酸钙沉淀生成的抑制、钙结合能力和螯合物得率分析(如图2-c/d)分析。p3-1在各方面都明显优于p3-2,甚至优于cpp。p3-1的ca
2+
结合能力和螯合率分别达到91.38
±
2.05%和57.69
±
1.90%。因此,选择p3-1进行下一步纯化。
[0053]
将粗肽p3-1进一步经rp-hplc在c18反相色谱柱上进行纯化。上样量为3ml,洗脱液a(含0.1%tfa的超纯水)和b(含0.1%tfa的乙腈),流速为13ml/min,洗脱梯度为0-15min:5-10%b;16-25min:10%~100%b。收集洗脱峰p3-1-1、p3-1-2、p3-1-3、p3-1-4(如图1-c),并进行磷酸钙沉淀生成的抑制、钙结合能力和螯合物得率分析(如图2-e/f)分析。其中p3-1-1的极性最强,p3-1-1的ca
2+
结合能力和螯合率最高(99.76
±
0.8%,90.57
±
2.2%),其次是p3-1-2(48.39
±
3.94%,84.64
±
1.80%)。这进一步表明,肽的ca
2+
绑定能力密切相关的净电荷量由肽和亲水性基团的数量。
[0054]
(4)钙结合肽的鉴定:
[0055]
利用lc-ms/ms质谱检测活性较高的组分p3-1-1,鉴定得到30条多肽,对其进行定量分析,含量最多的为deeendqvk(1151-1159),占72%(质谱图如图3所示,分子结构如图4所示),其余均为包含deeendqvk序列但是未被胰蛋白酶剪切完全的多肽。因此,具有钙离子螯合活性最强的肽段的氨基酸序列为deeendqvk。
[0056]
(5)肽钙螯合物的制备:
[0057]
用浓度为0.02mol/l tris-hcl缓冲液(ph 7.8)将pv水解物溶解至5mg/ml,加入0.05mol/l的cacl
2
,肽钙比为1:2(g/mmol)。在50℃震荡反应60min。然后加入9倍体积的无水乙醇中去除游离钙和肽。4℃下10000g离心15min,乙醇洗涤2次。对沉淀进行冻干,得到肽钙螯合物。
[0058]
其中,纯化肽的合成由上海吉尔生化有限公司(上海,中国)采用固相多肽合成方法生产。再采用上述方法制备肽钙螯合物,将deeendqvk制备的肽钙螯合物命名为deeendqvk-ca。
[0059]
实施例2钙螯合肽deeendqvk和肽钙螯合物deeendqvk-ca的表征
[0060]
1.钙结合肽的合成
[0061]
纯化肽的合成由上海吉尔生化有限公司(上海,中国)采用固相多肽合成方法生产。合成肽的纯度和分子量分别通过反向高效液相色谱配备shimadzu inertsil ods-sp(4.6mm
×
250mm,5μm)和lc-esi-ms/ms测定,并通过前述方法测定合成多肽的钙螯合活性。
[0062]
利用固相合成法合成了deeendqvk,利用液相色谱测定合成肽纯度为98.24%(图5)。验证了合成肽钙结合率为97.00
±
1.42%,螯合肽钙得率为87.76
±
1.91%。钙离子螯合量为151.10
±
3.57mg/g。
[0063]
2.扫描电子显微镜分析
[0064]
取少量钙螯合肽以及钙肽螯合物样品均匀涂于附有碳导电胶的载物台上,在真空喷镀仪上镀一层金属薄膜以便导电,在扫描电镜上进行观察,工作条件为:电压10k v、束流6.9
×
10-2
ma,工作距离6.7mm。结果如图6所示。
[0065]
3.紫外-可见吸收光谱分析
[0066]
钙结合肽和肽钙螯合物分别溶于去离子水中,浓度为1mg/ml。在紫外可见分光光度计上测量样品的紫外吸收。测量前,用去离子水作为空白对照,扫描波长190~400nm。
[0067]
紫外光谱是一种可以研究物质变化并确定是否存在新物质的分析方法。由有机配体和金属离子组成的配合物的形成导致原有的吸收峰的移动或消失或出现新的吸收峰。如图7所示,deeendqvk与其肽钙螯合物的紫外光谱有明显差异。在肽的紫外光谱中,在近220nm处观察到一个最大的吸收带,对应于肽键中c=o的n
→
π*跃迁所产生的特征峰。肽钙螯合物的最大紫外吸收峰在207nm,说明肽与钙结合后吸收峰移至短波长。ca
2+
与肽中的n原子和o原子形成配位键,影响肽键上的c=o和-nh
2
电子跃迁。这是由于过渡金属离子自身以及与其形成的配合体都会吸收紫外区的一部分波长而形成电子的跃迁,并且螯合物的中央离子与配位体键合造成了配位体内部的电子的跃迁与游离的配位体内部的电子跃迁所需的能量有所差别,同时相应原子的价电子的跃迁也发生了变化,因此在螯合过程中对紫外光的吸收发生了改变。证明了肽钙螯合物是一种不同于多肽的新的物质。
[0068]
4.圆二色谱分析
[0069]
钙结合肽和肽钙螯合物分别溶于去离子水中,浓度为1mg/ml。于室温25℃下,在远紫外区(190-260nm)通过圆二色谱仪(new mos-450,biologic,french)采集cd光谱。比色池光径为0.1cm,谱带宽度为1.0nm,数据收集间隔1nm,灵敏度为20mdeg,响应时间为0.25s,扫描速度为200nm/min,3次累积。使用杨氏算法拟合计算二级结构各组分比例,分析卵黄高磷蛋白结合钙前后的二级结构变化。
[0070]
圆二色谱可以用来分析蛋白质的二级结构的比例。利用圆二色谱研究钙离子对deeendqvk二级结构的影响。如图8所示,该肽的二级结构为24.2%的α-螺旋。当肽段与钙离子结合时,肽段钙螯合物的α-螺旋降低至2.2%,而β-折叠由原来的18.1%增加至35.4%。肽链的空间结构有伸展趋势。这可能是由于连续酸性氨基酸的羧基都结合了钙离子,从而失去原有的负电荷和,排斥力减小,有利于肽链的折叠和聚集。这与sem的结果一致,表明钙与肽链结合导致了肽段空间结构的改变。
[0071]
5.红外光谱分析
[0072]
为了研究钙与肽的主要结合位点,用干kbr(150mg)均匀研磨钙结合肽或肽钙螯合物(1mg),然后压缩成透明片进行分析。用ftir在室温25℃下测定,波数范围400-4000cm-1
,分辨率4.0cm-1
,扫描32次,每个样品扫描前均进行kbr背景扣除,收集每个样品的光谱,每个
样品做2个平行。红外分光光度计(nicolet is50,nicolet co.,usa)。使用omnic软件(thermo nicolet co.,madison,wi,usa)。分析光谱中的峰值信号。
[0073]
肽链上钙的螯合位点主要是氨基酸残基之间的酰胺键、肽的侧链及末端的羧基氧原子和氨基氮原子。因此,肽与钙螯合后,氨基与羧基的伸缩振动等吸收峰必然发生位移。deeendqvk和deeendqvk
–
ca的红外光谱图之间存在显著差异(图9)。此外,酰胺i带(1700~1600cm-1
)和酰胺-带(1600~1500cm-1
)也是酰胺的两个重要振动模式,分别归因于c=o键的伸缩振动,n-h键的弯曲振动以及c-n键的伸缩振动。实验结果表明,螯合ca
2+
后,酰胺i的波数(1663cm-1
)和酰胺-波段的波数(1538.04cm-1
)转移到1654cm-1
和1560.64cm-1
,分别代表羰基(c=o)的伸缩振动和(n—h)面内弯曲振动引起的红外吸收。ca—o振动带在500cm-1-800cm-1
之间,肽与钙离子的相互作用导致峰的展宽和减弱,甚至部分谱带的吸收消失。肽的酰胺a带在3443.64cm-1
有红外吸收,是由n—h键的伸缩振动引起的。在肽钙螯合物的ftir光谱中,酰胺a带转移到较低的频率3424.07cm-1
,这表明n—h键参与螯合物的形成。2637.36cm-1
处的宽峰和910.26cm-1
处的小峰分别代表羧基中o—h键的伸缩振动和面内弯曲振动,但与钙离子结合后两峰均消失,这说明deeendqvk中酸性氨基酸羧基上的o—h键被破坏,氧原子与ca
2+
形成配位键。羧酸基团中c=o的对称伸缩振动引起的红外吸收峰(1413.24cm-1
)在肽钙螯合物图谱中转移至较低的频率(1406.20cm-1
),表明-cooh可能结合ca
2+
并转化为-coo-ca。这种类型的螯合是可能的,因为羰基氧有一个未成键的自由电子可以螯合钙离子。位于指纹区1203.52cm-1
和1137.13cm-1
处的峰转移至更高频率1232.40cm-1
,形成c—o—ca,且峰强度降低或吸收消失。
[0074][0075]
6.
1
h核磁共振(nmr)光谱分析
[0076]
肽钙螯合物与肽(5mg)分别溶解于重水(d
2
o,0.5ml)。随后样品立即转移到核磁共振波谱管中,并用核磁共振(nmr)光谱仪进行分析。
[0077]
当肽与钙离子发生螯合反应后,会影响不同位置上氢质子的化学环境,使氢核周围电子云密度发生变化。当电子云密度变大时,屏蔽效应增强,共振频率减弱,信号峰往高场区域移动,即化学位移减小,反之则化学位移增大。故可以通过钙螯合前后的
1
h核磁共振图谱定性说明多肽与钙离子的结合位点。
[0078]
在图10中,信号位于δ≤1.5ppm时主要是甲基的氢质子,δ(1.5ppm-3.0ppm)归属于亚甲基的氢质子;δ(4.0ppm-5.0ppm)归属于连接强吸电子基团的氢,如与氧连接。从两图的对比可知,不同化学位移处的氢质子自旋耦合产生的裂解峰大多发生了位移变化。显著的变化在于以下几处:
[0079]
图10(b)中δ=4.8ppm处的信号峰为溶剂d
2
o,且螯合前后的二者的溶剂峰几乎完
全一致。但鳌合物的溶剂峰右侧的信号峰δ(4.15ppm-4.75ppm)信号值大大降低并且向化学位移低的值移动。这说明在鳌合反应时,多肽中的强吸电子基团coo-与ca
2+
反应或基团被取代,造成氢质子化学环境的改变,从而引起峰的显著变化。其次,位于2.5ppm处的三重峰对应于glu和gln中-ch2-coo-的h自旋耦合开裂。螯合反应后,这个峰值明显削弱,且向低场方向移动至2.41ppm.。这可能是由于羧基与钙反应后,亚甲基附近氢质子的电子云密度发生了变化。位于δ=1.45ppm处的峰归属于氨基中的h质子,随着钙离子的加入,信号迁移到较低的化学位移值1.40ppm。这也证明了asp,lys,asn和gln中的氨基也参与了螯合反应。
[0080]
实施例3肽钙螯合物生物利用度的测定
[0081]
模拟食物在胃肠道(包括胃蛋白酶-hcl和胰酶-胆汁盐)的环境,测定可溶性矿物元素溶解度及透过具有一定孔径的半透膜的透过率,可以评价矿物元素的生物利用度。三种钙制剂(caco
3
、葡萄糖酸钙和实施例1制备的肽钙螯合物deeendqvk-ca)在模拟胃肠道环境消化中的溶解度(%)和透过率(%)随消化时间(h)的变化。
[0082]
试验方法:
[0083]
(1)模拟胃液(simulated gastric fluid,sgf)和模拟肠液(simulatedintestinal fluid,sif)的配置:参照美国药典[77]描述的配方进行配置并作适当修正,步骤如下:
[0084]
sgf:称取2.0g nacl和3.2g胃蛋白酶(每mg含800~2500个活力单位)于1000ml烧杯中,加入800ml去离子水,搅拌至完全溶解,再向混合液中加入7.0ml浓盐酸,用浓盐酸调节ph至1.2,用去离子水定容至1000ml。
[0085]
sif:称取0.68g kh
2
po
4
,加25ml去离子水完全溶解,加入7.7ml的0.2mol/l naoh和50ml去离子水,混合均匀,加入1g胰蛋白酶和6g牛胆酸盐,搅拌至完全溶解,再用0.2mol/l的naoh调ph至7.6,用去离子水定容至100ml。
[0086]
(2)配制一系列浓度梯度的钙制剂溶液:由前期的结果可知1mol钙螯合肽deeendqvk可以结合大约5mol钙离子。将肽钙螯合物,葡萄糖酸钙,caco
3
分别用去离子水溶解,配制为钙离子浓度为(2、4、6、8、10mmol/l)的溶液。即肽钙螯合物(0.52、1.04、1.57、2.09、2.61mg/ml)、caco
3
(2、4、6、8、10mmol/l)、d-葡萄糖酸钙(2、4、6、8、10mmol/l溶液。
[0087]
(3)分别取10ml肽钙螯合物、caco
3
、d-葡萄糖酸钙溶液于45ml离心管中,用1mol/l hcl溶液调ph 2.0,在37℃水浴锅中预热3~5min,再分别加入10ml胃液,在37℃水浴锅中振荡1h。取出用naoh溶液调节ph 7.6,加入2ml肠液。
[0088]
取1/2上述溶液置于37℃水浴锅中振荡振荡nh(n分别为0.5、1、2、4)。取样,置于沸水中灭酶5min,冷却后用冷冻离心机6000g离心10min,取0.2g上清液置于消化管中,用混酸(硝酸:高氯酸,4:1,v/v)消化后,用去离子水溶液定容至50ml,每组实验分别做两组平行。利用原子吸收分光光度计测定钙含量。
[0089]
另外1/2溶液分别装入透析袋中,透析袋置于50ml离心管中,向离心管中加入去离子水以漫过透析袋内的液面,将离心管置于37℃水浴锅中振荡振荡n h(n分别为0.5、1、2、4)。之后对透析袋内液体取样,置于沸水中灭酶5min,冷却后用冷冻离心机6000g离心10min,取0.2g上清液置于消化管中,用混酸(硝酸:高氯酸,4:1,v/v)消化后,用去离子水溶液定容至50ml,每组实验分别做两组平行。利用原子吸收分光光度计测定钙含量。
[0090]
溶解度(%)=100
×
s/c,其中s=未透析样品中可溶性钙含量(mg/g),c=样品中
总钙含量(mg/g);
[0091]
透析度(%)=100
×
d/c,其中d=透析液中钙含量(mg/g),c=样品中总钙含量(mg/g)。
[0092]
结果如图11所示。在图11-a中caco
3
、葡萄糖酸钙和肽钙螯合物在钙浓度为2mmol/l时对应的钙溶解度随消化时间增加而逐渐降低,4h后分别降到56.431
±
1.012%,71.921
±
1.870%,88.910
±
0.880%。这主要是由于肠道呈碱性环境,易形成氢氧化钙沉淀,但肽钙螯合物的可溶性最终仍维持在88%左右,钙的良好生物利用度的前提条件是溶解度。
[0093]
在图11-b中,caco
3
、葡萄糖酸钙和肽钙螯合物对应的钙透过率随消化时间延长而逐渐增加,肽钙螯合物的钙透过率相对较高达47.11
±
0.99%,其次是葡萄糖酸钙,caco
3
最低仅为26.37
±
0.58%;在所有样品中,钙可溶性百分比均高于钙的可透析百分比。这意味着有些钙消化后虽处于可溶状态,但其处于与大分子结合状态,并不能通过半透膜,但肽钙螯合物的透过率仍显著高于其他钙制剂。
[0094]
肠道是通过主动转运过程从膳食中完成钙的吸收利用,这个过程具有饱和性。所以钙的摄入量与吸收量并不成正比。当钙的摄入量低时,随着膳食中钙量的增加,肠道吸收钙离子的量也相应增加。但是当钙的摄入量高于一定限度时,摄入量增大反而钙吸收率相对降低,剩余不被吸收的钙或由粪便排出。
[0095]
为了探讨钙摄入量与钙生物利用间的相互关系,我们对比了三种钙制剂在不同浓度下的生物利用度(图12)。结果表明溶解度和透过率受钙浓度的影响很大。三种钙制剂的溶解度和透过率均随着摄入浓度的增大而有不同程度的减小,这也验证了钙的摄入量增大与其生物利用度并不成正比。肽钙螯合物溶解度随浓度升高虽略有降低,但最终仍然能维持在69.88
±
3.31%左右的高水平,其透过率也维持在39.92
±
0.97%;相同浓度下,肽钙螯合物的溶解度以及透过率均明显高于其他两种钙制剂。对于葡萄糖酸钙而言,其溶解度和透过率分别降低到61.02
±
1.53%和30.21
±
1.51%,caco
3
溶解度和透过率分别降低到40.70
±
0.87%和16.22
±
1.35。即肽螯合钙的消化吸收率和保留率均高于其他有机钙和caco
3
。这说明适量的蛋白质和一些蛋白酶解物可与钙结合成可溶性络合物,而有利于钙吸收。
[0096]
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本专利构思的前提下,上述各实施方式还可以做出若干变形、组合和改进,这些都属于本专利的保护范围。因此,本专利的保护范围应以权利要求为准。
起点商标作为专业知识产权交易平台,可以帮助大家解决很多问题,如果大家想要了解更多知产交易信息请点击 【在线咨询】或添加微信 【19522093243】与客服一对一沟通,为大家解决相关问题。
此文章来源于网络,如有侵权,请联系删除
热门咨询
tips