HI,欢迎来到起点商标网!
24小时服务QQ:2880605093

一类土壤降解速度可控的磺酰脲除草剂新结构与新功能的发现与应用的制作方法

2021-02-02 12:02:59|515|起点商标网
一类土壤降解速度可控的磺酰脲除草剂新结构与新功能的发现与应用的制作方法

[0001]
本发明涉及农用化学除草剂的合成技术及土壤降解方法,具体涉及苯环5位取代 的磺酰脲类衍生物的制备、土壤降解研究、除草活性研究、对下茬作物安全性以及通过计算 机软件对化合物结构、除草活性、土壤降解速率与作物安全性四者之间的联动关系的研究与 应用。


背景技术:

[0002]
20世纪70年代,美国杜邦公司的g.levitt最早发现了磺酰脲类除草剂,1981年,第 一个商品化品种氯磺隆问世,开辟了除草剂发展的超高效时代,该类除草剂因为具有超高效、 对哺乳动物基本无毒、广谱、高选择性等特点受到广泛应用,目前,已有几十种商品化的品 种。此类除草剂对许多一年生或多年生杂草有特效,广泛应用于防除稻田、大豆田、玉米田、 麦类作物田、油菜田、草坪及其他非耕地杂草。
[0003]
国际上普遍使用的氯磺隆、甲磺隆、胺苯磺隆在土壤中降解速度较慢,对后茬作物玉 米、油菜、等作物产生不同程度的药害,造成严重的经济损失。
[0004]
1995年,美国杜邦公司在英国莱布顿国际植物保护大会上首次报道了氟吡嘧磺隆 (flupyrsulfuron-methyl sodium),其在25℃条件下土壤中的降解半衰期为0.42-44天,相比 氯磺隆、甲磺隆等长残效期的磺酰脲类除草剂,其在土壤中降解速度有很大的提升 (s.r.teaney,l.armstrong,et al.brighton crop protection conference-weeds,1995,1,49-56)。 随后注意有报道苯环5位取代的碘甲磺隆钠盐(iodosulfuron-methyl-sodium)、甲酰胺磺隆新 结构(foramsulfuron)等结构土壤降解较快等现象,分析上述几个商品化的磺酰脲类除草剂 的结构,我们大胆推测芳环5位取代基团的引入可能会对化合物的降解行为普遍产生影响。
[0005]
南开大学李正名课题组在商品化的磺酰脲类除草剂单嘧磺隆和甲磺隆的芳环5位引入 不同类型的基团,发现苯环5位取代基的引入有利于保持磺酰脲类化合物的超高除草活性; 随后我们又考察其在不同ph缓冲溶液中的水解反应,首次总结了磺酰脲苯环5位结构修饰 对其水解速率的影响,并得到了一定的降解规律:当苯环5位取代基的体积减小时,其相应 的水解速率增加。鉴于在磺酰脲苯环5位引入取代基可影响其降解速率的线索,我们进一步 系统地研究磺酰脲苯环5位结构的修饰对其除草活性和土壤降解速率的影响。经过在符合国 家标准的酸性和碱性土壤中的降解研究,首次发现苯环5位导入后会对其降解速度起产生很 严重的影响,而此构效关系的结论为:给电子基团加速降解,导入吸电子基团则降低其降解 速率,根据我组首次总结得出的普遍规律指导我们的分子设计,总结了5位不同氨基基团取 代结构降解最快,同时还维持了很高的除草药效水平。


技术实现要素:

[0006]
本发明的目的在于提供一类具有超高除草活性、无残留药害的适用于中国农田独
特耕 种模式的新型磺酰脲类除草剂。将不同取代基团引入磺酰脲苯环部分的5位,开发了苯环5 位取代衍生物的制备方法,发现了降解速率较快的新化合物,确认了这些新结构的除草活性 仍能维持原磺酰脲类商品的超高效除草活性,并首次提出氯磺隆衍生物的化学结构/生物活性 /环境降解/下茬作物安全性的四因素联动关系以取代传统的结构/活性关系,以达到根据不同 农作物的需要创制可控降解的磺酰脲类新结构的目的。
[0007]
本发明提供的苯环5位取代的磺酰脲类衍生物通式见式i和ii:
[0008][0009]
式中:
[0010]
z选自c或n;
[0011]
r
1
选自卤素、硝基、氰基、三氟甲基、卤代c
1-c
6
烷基、c
1-c
6
烷氧基、卤代c
1-c
6
烷 氧基、c
1-c
6
烷硫基、卤代c
1-c
6
烷硫基、c
1-c
6
烷氧基羰基、卤代c
3-c
6
环烷基或n,n-(c
1-c
6
烷基)氨基甲酰基;
[0012]
r
2
选自卤素、硝基、氰基、三氟甲基、c
1-c
6
烷氧基羰基、n,n-(c
1-c
6
烷基)氨基 甲酰基、c
1-c
6
烷基、卤代c
1-c
6
烷基、c
1-c
6
烷氧基、卤代c
1-c
6
烷氧基、c
1-c
6
烷硫基、卤 代c
1-c
6
烷硫基、氨基、c
1-c
6
烷基氨基、c
1-c
6
酰胺基、c
1-c
6
磺酰胺基、c
1-c
6
亚胺基、c
2-c
6
烯基、卤代c
2-c
6
烯基、c
2-c
6
炔基,卤代c
2-c
6
炔基、n-c
1-c
6
烷基-n-c
1-c
9
烷氧基羰基、 n-c
1-c
6
烷基-n-c
1-c
6
氟代烷氧基羰基、n-c
1-c
6
烷基-n-苄基、含n,o,s三元-五元杂环, c
1-c
6
烷基取代的含n,o,s三元-五元杂环;
[0013]
r
3
、r
4
选自h、f、cl、ch
3
、och
3
、oc
2
h
5
、och
2
ch
2
ch
3
、cf
3
、ocf
3
、ochf
2
、 och
2
cf
3
、nhch
3
、n(ch
3
)
2
、n(c
2
h
5
)
2
、sch
3
或ch=chch
3

[0014]
在上述衍生物的定义中,所用术语不论单独使用还是用在复合词中,代表如下取代基:
[0015]
卤素为氟、氯、溴或碘;
[0016]
烷基为直链或支链烷基;
[0017]
卤代烷基为直链或支链烷基,在这些烷基上的氢原子可以部分或全部被卤原子取代;
ꢀ“
卤代烯基”、“卤代炔基”的定义与术语“卤代烷基”相同;
[0018]
烯基为有2-6个碳原子的直链或支链并可在任何位置上存在有双键;
[0019]
炔基为有2-6个碳原子的直链或支链并可在任何位置上存在有三键。
[0020]
本发明苯环5位取代的磺酰脲类化合物i按scheme-1所示合成方法:
[0021]
[0022]
scheme-1苯环5位取代磺酰脲类化合物i的合成路线
[0023]
制备步骤如下:
[0024]
通式化合物i-1与氯甲酸乙酯、碳酸钾溶于有机溶剂中,加热回流得到通式化合物i-2, 然后与取代的芳香胺溶于有机溶剂中,回流制得目标化合物i,反应式中各基团如权利要求1 中的定义。
[0025]
本发明苯环5位取代的磺酰脲钠盐类化合物ii按scheme-2所示合成方法:
[0026][0027]
scheme-2苯环5位取代磺酰脲钠盐类化合物ii的合成路线
[0028]
通式化合物i与氢氧化钠溶于水中在室温下搅拌至体系呈淡黄色,减压脱溶即得目标 化合物ii,反应式中各基团如权利要求1中的定义。
[0029]
所述的有机溶剂选自丙酮、二氯甲烷、氯仿、四氯化碳、苯、甲苯、甲醇、乙醇、乙 酸乙酯、四氢呋喃、乙腈、1,4-二氧六环、n,n-二甲基甲酰胺或二甲基亚砜。
[0030]
所述取代磺酰脲类衍生物均可用于制备农用化学除草剂。
[0031]
所述取代磺酰脲类衍生物可用于防除一年生或多年生杂草;还可以作为活性成分配以 农业可以接受的助剂组成的农药组合物用于杂草的防治。本发明的技术效果是:实现磺酰脲类衍生物在酸性与碱性土壤中的可控性降解,并在维 持超高除草活性的基础上,提高其对下茬作物的安全性,减少对下茬作物苗期生长危害。
附图说明
[0032]
图1是部分目标化合物i及ii在酸性土壤降解以及动力学曲线(ph=5.52)
[0033]
图2是部分目标化合物i及ii在碱性土壤降解以及动力学曲线(ph=8.64)
[0033]
图3是部分目标化合物i及ii的除草活性
[0034]
图4是部分目标化合物i及ii的油菜根长抑制率图
[0035]
图5是部分目标化合物i及ii在碱性土壤中对玉米经土壤处理施用的作物安全性 (ph=8.64)
[0036]
图6是部分目标化合物i及ii在碱性土壤中的结构-除草活性-降解-作物安全性四因素 联动关系图
具体实施方式
[0037]
以下结合实施例来进一步说明本发明,其目的是能更好的理解本发明的内容及体 现本发明的实质性特点,因此所举之例不应视为对本发明保护范围的限制。
[0038]
实施例1
[0039]
2-氯-5-氨基-苯磺酰胺基甲酸乙酯的合成
[0040][0041]
在100ml单口圆底烧瓶中,将2-氯-5-氨基-苯磺酰胺(2.06g,0.01mol)、碳酸钾(2.76g, 0.02mol)溶到30ml丙酮中,然后加入氯甲酸乙酯(1.30g,0.012mol),加热回流过夜,减压浓 缩除去溶剂丙酮,剩余物加入乙醚与水的混合溶剂(50ml,v/v=1∶1)溶解,分液去掉乙醚层, 水层用盐酸调节ph至3左右,有固体析出,抽滤,干燥得到白色固体,直接用于下一步反 应。
[0042]
实施例2
[0043]
1-(2-氯-5-氨基-苯基磺酰基)-3-(4-甲氧基-6-甲基-1,3,5-三嗪-2-基)脲的合成
[0044][0045]
在100ml单口圆底烧瓶中,将2-氯-5-氨基-苯磺酰胺基甲酸乙酯(2.78g,0.01mol)、4
-ꢀ
甲基-6-甲氧基-2-氨基-1,3,5-三嗪(0.14g,0.01mol)溶到40ml甲苯中,加热回流过夜。反 应完毕后冷却至室温,将反应液脱溶,残余物经柱色谱纯化得到目标化合物。
[0046]
现将根据实施例1~2的制备方法而采用不同的原料制备的该类衍生物1~2212,列入 表1,部分衍生物
1
h nmr(bruker av400 spectrometer using tetramethylsilane as the internal standard)、高分辨质谱(hrms)、紫外最大吸收值(uv)数据列入表2
[0047]
表1目标化合物i和ii的结构
[0048]
[0049]
附:化合物no.2121及氯磺隆对照药,下同。
[0050]
表2部分目标化合物i和ii的核磁氢谱、碳谱及紫外数据
[0051]
[0052]
实施例3
[0053]
平皿法:以油菜(brassicanapus)作为测试对象,将2ml配置好的样品溶液倒入铺有滤 纸的培养皿(直径6cm)中,向其中加入15粒事先在蒸馏水中浸泡4小时的油菜种子,然后将 培养皿放入温室(25
±
2℃)中避光培养65小时,观察油菜种子的萌发情况,并测定相应的胚 胎长度,与空白对照进行比较,得出相应的抑制率。
[0054]
平皿法所得部分化合物对油菜抑制率的结果如表3所示:
[0055]
表3部分目标化合物i及ii的油菜抑制率
[0056][0057]
从表3所示油菜抑制结果来看,所测化合物基本在浓度为0.1μg/ml~10μg/ml范围内,与 对照药氯磺隆(no.2212)的除草活性相当;其中含羰基取代基的结构除草活性略低于烷基取 代结构的除草活性,
[0058]
实施例4
[0059]
用本发明提供的部分目标化合物i及ii进行除草活性测试,测试对象为油菜、苋菜、 稗草、马唐,测试方式分为茎叶处理与土壤处理。测试方法如下:
[0060]
1)药液配制:
[0061]
乳化水的配制:首先配制含量1

的水乳液,用烧杯称取1g乳化剂,加少量蒸馏水 充分溶解后,装入1000ml的容量瓶中,并用蒸馏水多次清洗烧杯,全部倒入容量瓶中,最 后用蒸馏加到刻度,充分摇匀待用。
[0062]
母液配制:称取10mg供试样品溶于1ml的dmf中,待充分溶解后配制成10mg/ml 的母液。按照喷雾面积计算用药量后,移取所需体积至10ml小烧杯中,加入相应体积的乳 化水配制成水乳液以备喷雾使用。如果需要,逐级稀释得到所需水乳液备用。
[0063]
2)盆栽法(土壤处理)
[0064]
将固定量的土壤放入直径为7.0cm的塑料小杯中,同时加一定量水,以喷施法对土壤 施以不同剂量的药剂,之后播种,在其上面翻盖固定厚度的土壤,于温室中培养,并以塑料 布覆盖直至幼苗出土,每天施以定量清水保持植物的正常生长。待施药处理21天后测量地上 部分鲜重,与未施药组进行对比计算出鲜重抑制百分率。测试材料为:油菜(brassicanapus)、 反枝苋(amaranthusretroflexus)、稗草(echinochloacrusgalli)以及马唐(digitariaadscendens)。
[0065]
3)盆栽法(茎叶处理)
[0066]
将固定量的土壤放入直径为7.0cm的塑料小杯中,同时加一定量水,之后播种,在其 上面翻盖固定厚度的土壤,于温室中培养,并以塑料布覆盖直至幼苗出土,每天施以定量清 水保持植物的正常生长。幼苗出土后,以喷施法施以不同剂量的药剂,待施药处理21天后测 量地上部分鲜重,与未施药组进行对比计算出鲜重抑制百分率。测试材料同盆栽法(土壤处 理)。
[0067]
上述盆栽试验的除草活性的测试结果如表4所示
[0068]
表4部分目标化合物i及ii的除草活性抑制率%
[0069][0069][0070]
结果表明,大部分目标化合物i表现出与商品化的除草剂氯磺隆(no.2212)相当的除 草活性。例如化合物28、43、9、58、163、223、228等,在10g/ha使用剂量下的茎叶处理 对苋菜的抑制活性均为100%;化合物28、43、58、193等,在10g/ha茎叶处理和土壤处理 条件下,对对四类不同的单子叶和双子叶作物都表现出超高活性。
[0071]
实施例5
[0072]
利用本发明提供的部分目标化合物i及ii进行土壤降解研究,供试土壤样品为广东韶 关土壤与河北沧州土壤,广东韶关土壤ph为5.52,土壤有机质含量为47.3g/kg;河北沧州土 壤ph为8.64,土壤有机质含量为9.20g/kg(gb/t 31270.1-2014,化学农药环境安全
期都比商品化的除草剂氯磺隆(no.2212)快。供电子基团的引入,可以加快氯磺隆的降解,5 位不同酰基与烷基取代的氨基结构的引入,均可以加快氯磺隆在酸性与碱性土壤中的降解速 度。例如,5位二乙氨基引入代表化合物9,其在ph5.52的酸性土壤中降解半衰期相较于氯 磺隆来说,加快了一倍,而在ph8.64的碱性土壤中,其降解速率加快了近30倍。
[0079]
实施例6
[0080]
磺酰脲除草剂作为谷物田除草剂被广泛使用,利用本发明提供的部分目标化合物i及 ii进行玉米安全性测试。测试流程如下:
[0081]
采用盆栽法,分别进行土壤处理和茎叶处理,观察玉米(品种:新单66)安全性。每 种结构处理重复3次,分别进行2、4、8g/亩剂量的安全性测试。
[0082]
土壤处理:在12cm的纸杯中加入适宜量的培养土(壤土∶蛭石∶肥料土=1∶1∶1),以 2、4、8g/亩的剂量进行药物喷雾,喷雾后播种,调节土壤湿度,于花房中进行培养,每天加 以定量的清水浇灌以保证作物正常生长,16天(新单66)后调查结果,测定地上部鲜重, 以鲜重抑制百分数来表示安全性。
[0083]
茎叶处理:在12cm的纸杯中加入适宜量的培养土(壤土∶蛭石∶肥料土=1∶1∶1),调 节土壤湿度,播种,于花房中进行培养,幼苗出土前以塑料膜覆盖以保证生长环境的温度和 湿度,每天加以定量的清水浇灌以保证作物正常生长。待玉米生长至三叶期或三叶一心期, 以2、4、8g/亩的剂量进行茎叶药物喷雾,16天后调查结果,测定地上部鲜重,以鲜重抑制 百分数来表示安全性。
[0084]
部分目标化合物i及ii对下茬作物玉米安全性测试结果见表7
[0085]
表7玉米安全性测试结果
[0086][0087]
由表中结果可知,大部分部分目标化合物i及ii在2g/亩和4g/亩下,对下茬作物玉米 经过土壤处理施用后,对玉米生长无显著抑制活性,抑制率低于10%,优于商品化的除草剂 氯磺隆(no.2212)。在2g/亩下,大部分部分目标化合物i及ii对下茬作物玉米经过茎叶处 理施用后,对玉米生长无显著抑制活性,化合物208、223、238、253等对玉米生长抑制率为 0。其中化合物2对玉米土壤处理安全性较差,显著抑制玉米生长,而对玉米茎叶处理后抑制 率低于氯磺隆。
[0087]
实施例7
[0088]
利用本发明提供的部分目标化合物i及ii结合之前所得除草活性数据、降解半衰期及 4g/亩下对玉米土壤处理的作物安全性数据,通过计算机软件python对四种联动因素进行研 究,并得到四因子联动3d模型图,并自动筛选出最优化合物5位二乙氨基取代化合物。
[0089]
综上所述氯磺隆5位供电子基团的引入,可以加快氯磺隆衍生物在酸性与碱性土壤中 的降解速度,并在一定程度上改善氯磺隆对下茬作物的安全性问题,基团体积越大,作物安 全性越好。但就除草活性而言,基团体积越大,其除草活性越差。通过建立化合物结构-除草 活性-降解-作物安全性的四因子联动关系模型,在python中进行拟合,最终自动筛选出最优 化合物9与193,能够在保证在加快氯磺隆在土壤中降解的同时,维持较好的除草活性,并 对下茬作物玉米安全。
[0090]
将不同取代基团引入磺酰脲苯环部分的5位,开发了苯环5位取代衍生物的制备方法, 发现了降解速率较快的新化合物,确认了这些新结构的除草活性仍能维持原磺酰脲类商品的 超高效除草活性,并首次提出氯磺隆衍生物的化学结构/生物活性/环境降解/下茬作物安全性 的四因素联动关系以取代传统的结构/活性关系,以达到根据不同农作物的需要创制可控降解 的磺酰脲类新结构的目的。此项研究对于解决磺酰脲类除草剂降解困难,尤其在碱性土壤中 残留药害严重,提供了有效的方法。这些结果将为进一步探索磺酰脲和其他除草剂的潜在可 控降解提供有价值的线索,用于指导创制适用于我国特殊耕种模式的、有利于生态环境安全 的新型磺酰脲类除草剂。我们将继续改进这部分工作,以获得更有价值的实验结果
[0091]
虽然以上描述了本发明的具体实施方式,本发明的保护范围是由所附权利要求书限定 的。本领域的技术人员在不背离本发明的原理和实质的前提下,可以对这些实施方式做出多 种变更或修改,但这些变更和修改均落入本发明的保护范围。

起点商标作为专业知识产权交易平台,可以帮助大家解决很多问题,如果大家想要了解更多知产交易信息请点击 【在线咨询】或添加微信 【19522093243】与客服一对一沟通,为大家解决相关问题。

此文章来源于网络,如有侵权,请联系删除

tips