HI,欢迎来到起点商标网!
24小时服务QQ:2880605093

具有定向贯通孔道的蚕丝-碳纳米管复合材料及制备方法与流程

2021-02-02 07:02:00|417|起点商标网
具有定向贯通孔道的蚕丝-碳纳米管复合材料及制备方法与流程

[0001]
本发明涉及蚕丝复合材料技术领域,特别是涉及一种具有定向贯通孔道的蚕丝-碳纳米管复合材料及其制备方法。


背景技术:

[0002]
蚕丝是一种天然高分子纤维蛋白,具有独特的力学性能、生物相容性、生物可降解性及良好的可加工性。蚕丝经过脱胶得到的丝素蛋白,再通过溶解和多样化的制备方法,已经制备成不同的形态(如纤维、薄膜、凝胶、多孔支架等),这些不同形态的蚕丝材料被成功地用于皮肤、韧带和骨骼等组织工程修复中。目前,蚕丝材料制备过程中,大多采用溴化锂、六氟异丙醇等溶剂溶解丝素蛋白。例如公开号为cn109867811a的专利,通过将脱胶蚕丝先在libr溶液中溶解,溶解后透析除盐,随后冷冻干燥获得丝素蛋白粉,再将丝素蛋白粉溶于六氟异丙醇中获得无水的蚕丝蛋白溶液,再将该溶液与水溶性盐颗粒混合注入到多孔模具中,将模具浸泡在甲醇中,得到多孔-实体复合蚕丝蛋白材料,用于生物植入医疗领域。libr水溶液虽然能够较好的溶解蚕丝蛋白,但透析除去libr的过程繁琐、耗时长、成本高,获得的蚕丝溶液浓度低;六氟异丙醇本身有毒且具有腐蚀性,对环境不友好,如果处理不当,会使制备的材料存在细胞毒性的风险。更重要的是,这些方法是一种分子水平的溶解,即完全破坏了蚕丝蛋白原有的分层结构,蛋白分子链发生降解,破坏了反平行β-折叠结构,造成制备的蚕丝材料不能继续保持天然蚕丝纤维优异的力学性能,使得材料机械强度不高,限制了它的应用。因此,在溶解方面选择一种绿色、快速、操作简便,不破坏蚕丝蛋白中原有高性能结构,就能获得高浓度蚕丝蛋白溶液的方法,是十分必要的。
[0003]
目前,单纯以蚕丝蛋白为基质制备的蚕丝材料与天然生物材料的力学性能相差甚远,用于组织工程等相关领域的蚕丝生物材料,需要具有一定的力学强度和三维多孔的内部结构,然而目前制备的材料还存在力学强度和韧性不能满足应用需求,内部三维多孔结构不能解决细胞生长过程中营养物质的输送和代谢物质的排出不畅等问题。


技术实现要素:

[0004]
本发明的目的之一是提供一种具有定向贯通孔道的蚕丝-碳纳米管复合材料。具体技术方案如下:
[0005]
一种具有定向贯通孔道的蚕丝-碳纳米管复合材料,该复合材料由碳纳米管与丝素(脱胶后的蚕丝)按照质量比为1:20~200组成,其内部具有定向贯通孔道,该材料的制备方法包括:将丝素溶于cacl
2-甲酸溶液中,获得丝素溶液,向该丝素溶液中加入多壁碳纳米管,分散后使用液氮预冷铜柱进行定向冷冻。
[0006]
本发明的目的之二是提供一种具有定向贯通孔道的蚕丝-碳纳米管复合材料的制备方法。具体的技术方案如下:
[0007]
一种具有定向贯通孔道的蚕丝-碳纳米管复合材料的制备方法,包括以下步骤:
[0008]
(1)制备蚕丝溶液:将烘干的蚕茧清理干净并剪碎,按浴比1:300~500的比例,加
入到0.01-0.05mol/l的na2co3溶液中,100℃煮沸脱胶5-30min,将脱胶后的蚕丝(即丝素)用水清洗干净后自然风干,然后将其溶于质量浓度为6-8%的cacl
2-甲酸溶液中,获得丝素溶液(脱胶的时间将影响蚕丝的分子量,丝素蛋白溶于质量浓度为6%-8%的cacl
2-甲酸溶液,可制备质量浓度为5%-20%的丝素溶液);
[0009]
(2)制备蚕丝-碳纳米管分散液:按照多壁碳纳米管与丝素的质量比为1:20~200,向上一步所得丝素溶液中添加多壁碳纳米管,获得蚕丝-碳纳米管溶液;使用高速分散机将蚕丝-碳纳米管溶液分散1-3min,然后将分散后的溶液在20-30℃超声15-30min,得到蚕丝-碳纳米管分散液;
[0010]
(3)将上一步所得蚕丝-碳纳米管分散液定向冷冻后于零下60-80℃冷冻6-8h;
[0011]
(4)将上一步所得产物冷冻干燥1-3天;
[0012]
(5)将上一步所得冷冻干燥后的蚕丝-碳纳米管产物用水浸泡24-72h,然后再次冷冻干燥24-72h,即可得到所述具有定向贯通孔道的蚕丝-碳纳米管复合材料。
[0013]
优选地,步骤(1)中蚕茧剪碎后的尺寸为0.5-1.5cm2。
[0014]
优选地,步骤(2)所述多壁碳纳米管为羧基化多壁碳纳米管。
[0015]
优选地,步骤(2)所述高速分散机的转速为3000-8000rpm。转速过低或分散时间过短会导致蚕丝-碳纳米管溶液无法分散均匀,影响最终蚕丝-碳纳米管复合材料的制备以及材料性能。
[0016]
优选地,步骤(3)所述定向冷冻的方法是:将铜柱置于液氮中预冷15-30min,然后将所述蚕丝-碳纳米管分散液注入只有底部导热的模具中,之后将该模具放置于铜柱顶部,直至分散液中的溶剂形成的冰晶沿单一垂直方向生长完毕,且所述分散液固化成形。
[0017]
优选地,在步骤(5)所述浸泡过程中,每2-4h换一次水。浸泡时间过短或换水频率过低会导致材料中的cacl2残留,影响蚕丝-碳纳米管复合材料的性能。
[0018]
本发明的有益效果如下:
[0019]
(1)相对于传统的丝素溶液制备,本方法

操作简单、快速,直接溶解丝素即可,省去后续透析工艺,大大缩短了溶解时间,可在短时间内得到高浓度丝素溶液;

使用易挥发的甲酸作为溶剂,样品制成后溶剂无残留,无污染;
[0020]
(2)本方法在丝素溶液中加入多壁碳纳米管,与其它复合材料添加剂相比,其密度低强度高,无生物毒性,细胞相容性好,为制备出轻质高强度的定向贯通孔道蚕丝-碳纳米管复合材料提供了性能和安全保障;
[0021]
(3)本方法在制备样品前对丝素溶液进行了预处理:

高速匀浆机分散丝素溶液,使溶液均一,保证所制得定向贯通孔道蚕丝-碳纳米管复合材料质地均匀;

采用超声振荡的方法,去除溶液内部微小气泡,保证所制得的定向孔蚕丝-碳纳米管复合材料内部结构规则、有序;
[0022]
(4)本方法采用了定向冷冻技术,所制得的定向贯通孔道蚕丝-碳纳米管复合材料的内部孔道排列规则,机械强度高,生物相容性好,有望用于生物医学。
[0023]
(5)在保持蚕丝原有高性能结构的基础上,为实现利用较少的材料获得较大的块体强度,即质轻、强度和比表面积大,解决许多材料力学性能不突出的问题,制备了具有规则定向贯通孔道结构的蚕丝-碳纳米管复合材料,这种结构不仅能够增强材料的力学性能同时还可为细胞的生长提供适宜的微环境和定向的引导作用,该结构较低的传质阻力和较
高的透过率,解决细胞生长过程中营养物质的输送、代谢物质的排出不畅的问题,有望为特定组织修复提供不可替代的结构支撑。在以蚕丝为主体的材料中,加入少量的羧基化的多壁碳纳米管作为增强剂,利用其表面的羧基基团与丝素蛋白通过化学键相互作用,进一步提高材料的力学性能和稳定性。同时,碳纳米管的加入还能在组织修复过程中促进细胞的生长、增殖和分化。
附图说明
[0024]
图1为本发明实施例1所得蚕丝-碳纳米管复合材料的制备流程图;
[0025]
图2为本发明实施例1所得蚕丝-碳纳米管复合材料实物和扫描电镜图片,其中图2a为样品的宏观形貌,图2b是样品在扫面电镜下的微观形貌;
[0026]
图3为本发明实施例2和3所得不同脱胶时间、不同丝素浓度制备的蚕丝-碳纳米管复合材料实物图;
[0027]
图4为本发明实施例4所得蚕丝-纳米管复合材料抗压实物图,其中图4a为样品和砝码的图片,图4b为砝码压在样品上的图片;
[0028]
图5为本发明实施例4不同碳纳米管添加量的蚕丝-碳纳米管复合材料的压缩性能曲线。
具体实施方案
[0029]
实施例1
[0030]
本发明工艺流程如图1所示,具有定向贯通孔道的蚕丝-碳纳米管复合材料的制备方法,包括以下步骤:
[0031]
(1)制备蚕丝溶液:将烘干的蚕茧清理干净,裁剪成1cm2。称取剪碎的蚕茧,按浴比1:400比例,加入到0.02mol/l的na2co3溶液中,100℃煮沸脱胶5min。将脱胶后的蚕丝用去离子水清洗多次,洗净后自然风干,取脱胶后干燥的丝素,溶于质量浓度为7%的cacl
2-甲酸溶液中,获得质量浓度为10%的丝素溶液;
[0032]
(2)制备蚕丝-碳纳米管分散液:用精确度为0.1mg的电子秤称取碳纳米管(碳纳米管与丝素质量比为1:200),将碳纳米管加入到丝素溶液中,用高速分散机将混合溶液以4000rpm的速度分散2min,分散后将溶液超声20min,保持超声温度20-30℃(过高温度、超声时间过长会使样品溶液发生变化,影响最终结果),使溶液分散的更加均匀,并除去溶液中的气泡,得到蚕丝-碳纳米管分散液;
[0033]
(3)预先将铜柱置于液氮中,使铜柱预冷15min。待铜柱预冷完成,将蚕丝-碳纳米管分散液注入只有底部导热的模具中,之后将该模具放置于铜柱顶部,使所述分散液中的溶剂形成的冰晶沿单一垂直方向生长,并形成取向结构的冰晶,同时溶质被冰晶所排斥,后被挤压在冰晶之间(凝固的溶剂充当了形成定向贯通多孔结构的模板)。待溶剂冰晶向上生长,蚕丝-碳纳米管分散液固化成形后,将其连同所述模具一同转移至﹣80℃环境中冷冻6h;
[0034]
(4)将低温(﹣80℃)冷冻后的样品转移至冷冻干燥机中,冷冻干燥48h;
[0035]
(5)冷冻干燥结束后,将样品与模具分离,用去离子水浸泡样品48h,每2h换一次水,除去材料中残留的cacl2,浸泡结束后,将样品再次冷冻干燥48h,即制得具有定向贯通孔道的蚕丝-碳纳米管复合材料。
[0036]
本实施例制备的蚕丝-碳纳米管复合材料样品实物和内部结构的扫描电镜图如图2所示(其中图2a为样品的宏观形貌,图2b是样品在扫面电镜下的微观形貌)。由图2a和图2b可知,制备的蚕丝-碳纳米管复合材料形状规则,内部具有明显的定向孔道结构。
[0037]
实施例2
[0038]
本实施例考察脱胶工艺时间对复合材料性能的影响。
[0039]
(1)制备蚕丝溶液:将烘干的蚕茧清理干净,裁剪成1.5cm2。称取剪碎的蚕茧,按浴比1:450比例,加入到0.02mol/l的na2co3溶液中,100℃煮沸,选择脱胶时间为5min、10min和30min。将脱胶后的蚕丝用去离子水清洗多次,洗净后自然风干,取脱胶后干燥的丝素,溶于质量浓度为8%的cacl
2-甲酸溶液,获得质量浓度为10%的丝素溶液;
[0040]
步骤(2)~(5)同实施例1。
[0041]
由于脱胶的时间将影响蚕丝分子链的长度,体现在影响蚕丝的平均分子量,平均分子量随着脱胶时间的增加而降低,进而影响制备材料的形态、拉伸、压缩等力学性能。
[0042]
本实施例制备的样品实物如图3所示,图3提供了脱胶5min和10min制备的蚕丝-碳纳米管制备的复合材料,由于脱胶30min制备的蚕丝-碳纳米管复合材料没有形成规则的形状,所以没有给出图片。
[0043]
实施例3
[0044]
本实施例考察丝素溶液浓度对复合材料性能的影响
[0045]
(1)制备蚕丝溶液:将烘干的蚕茧清理干净,裁剪成0.5cm2。称取剪碎的蚕茧,按浴比1:350比例,加入到0.02mol/l的na2co3溶液中,100℃煮沸10min。将脱胶后的蚕丝用去离子水清洗多次,洗净后自然风干,取脱胶后干燥的丝素,溶于质量浓度为8%的cacl
2-甲酸溶液,制备质量浓度为5%、10%和20%的丝素溶液;
[0046]
步骤(2)~(5)同实施例1。
[0047]
本实施例制备的样品实物如图3所示,图3提供了丝素溶液浓度为5%,10%和20%制备的蚕丝-碳纳米管制备的复合材料。从图3中可知,丝素溶液的浓度对所制备材料的形状、结构、力学性能有较大影响。
[0048]
实施例4
[0049]
本实施例考察羧基化多壁碳纳米管的添加量对复合材料性能的影响
[0050]
(1)制备蚕丝溶液的过程同实施例1;
[0051]
(2)制备蚕丝-碳纳米管分散液:用精确度为0.1mg的电子秤称取羧基化多壁碳纳米管(碳纳米管与丝素质量比为1:20-1:200),将碳纳米管加入到丝素溶液中,用高速分散机将混合溶液以4000rpm的速度分散2-3min,分散后将溶液超声20-30min,保持超声温度20-30℃;
[0052]
步骤(3)~(5)同实施例1。
[0053]
本实施例制备的样品抗压实物图如图4所示(图4a为样品和砝码的图片,图4b为砝码压在样品上的图片),图4a和图4b展示了一个块重约0.6g的蚕丝-碳纳米管制备的复合材料,该材料能够在受到200g砝码重量下不变形,支撑起自身重量300倍以上的重量。
[0054]
本实施例制备的样品的压缩性能曲线如图5,不同碳纳米管添加量的蚕丝-碳纳米管复合材料压缩性能曲线。由图5可知,材料加入碳纳米管后,力学性能明显增强,仅添加量为0.5%时,力学性能就有大幅度提升。
[0055]
综上所诉,以上仅为本发明较佳的具体实施方式,并不是对本发明的限制,凡是根据本发明具体实施方案所做出的显而易见的修改或修饰,均属于本发明的保护范围内。

起点商标作为专业知识产权交易平台,可以帮助大家解决很多问题,如果大家想要了解更多知产交易信息请点击 【在线咨询】或添加微信 【19522093243】与客服一对一沟通,为大家解决相关问题。

此文章来源于网络,如有侵权,请联系删除

tips