HI,欢迎来到起点商标网!
24小时服务QQ:2880605093

一种全共轭嵌段聚合物半导体材料、制备方法及应用与流程

2021-02-02 06:02:11|284|起点商标网
一种全共轭嵌段聚合物半导体材料、制备方法及应用与流程

[0001]
本发明涉及一种共轭聚合物半导体材料、制备方法及应用,属于有机聚合物半导体材料领域。


背景技术:

[0002]
低温溶液法制备有机光电子器件是目前科研界和工业界关注的热点,而决定目前有机光电子器件产品化商业化的最大障碍是产品的性能和成本,由于目前有机光电子器件的性能主要取决于所采用的有机分子的性能,所以开发新型的有机分子材料将是解决未来能量储存,光电转换,开发高效廉价半导体器件等关键(y.-j.cheng,s.-h.yang,c.-s.hsu,chem.rev.2009,109,5868)。
[0003]
在过去的十多年中,高性能有机半导体材料的研发取得了长足的发展。在有机太阳能电池,有机发光二极管和有机场效应晶体管中也取得了优异的性能(j.h.burroughes,d.d.c.bradley,a.r.brown,r.n.marks,k.mackay,r.f.friend,p.l.burn,a.b.holmes,nature.1990,347,539;m.a.baldo,d.f.o

brien,a.shoustikow,s.sibley,m.e.thompson,s.r.forrest,nature 1998,395,151.),但是与商业化的性能门槛相比还有不少的距离,但是有机分子材料具有结构可设计性,性能可控,能进行低温溶液法制备,可研发柔性半透明的大面积器件,这些独特的优势是的有机光电子器件具有广阔的研发前景,以有机聚合物太阳能电池为例,2000年诺贝尔化学奖得主alan j.heeger等(g.yu,j.gao,j.c.hummelen,f.wudl,a.j.heeger,science 1995,270,1789)首次报道通过溶液旋涂方法制备得到以聚(3-[0004]
己基)噻吩和富勒烯衍生物(pcbm)为光敏层材料的高效聚合物太阳能电池器件以来,有机聚合物太阳能电池在过去的十多年中光电转换效率已经从最初的1%提高的现在的12%(z.he,b.xiao,f.liu,h.wu,y.yang,s.xiao.c.wang,t.p.russell,y.cao,nat.photonics 2015,9,174),达到了商业化10%的要求,得益于新型有机半导体材料的研发和器件制备工艺的优化,有机太阳能电池取得了长足的发展,但是目前此类电池还存在能量损失高,目前的有机材料介电常数较低,有机太阳能电池制备时形貌不可控等不足,这使得后期的新材料研发有了明确的方向。
[0005]
目前,广泛用于有机太阳能电池的有机分子材料主要采用d-a型的分子设计思路,通过这种方法可以很好的控制这种给体-受体型材料的光学吸收,电学能级,分子主链的平面性,分子间的相互作用力,是一种有效的提升材料光电转换性能的方法(j.roncali,chem.rev.1997,97,173),在器件的后期制备方面,文献(w.ma,c.y.yang,x.gong,k.lee,a.j.heeger,adv.funct.mater.2005,15,1617;j.peet,j.y.kim,n.e.coates,w.l.ma,d.moses,a.j.heeger,g.c.bazan,nat.mater.2007,6,497.)报道了有机太阳能电池需要通过热退火或采用高沸点的溶剂添加剂达到调整相分离的目的,这些繁琐的步骤不仅不利于商业化产品开发,更会对器件的寿命有所影响,因此,新型的分子材料设计需要以器件制备和性能为导向,能对材料的性能有精确的控制,更需要从材料本身来简化器件的制备步骤。


技术实现要素:

[0006]
本发明针对现有技术存在的不足,提出一种具有性能精确可控,结构多样化特征的全共轭嵌段聚合物有机半导体材料及其制备方法,将其应用于有机聚合物太阳能电池,能有效提升共轭半导体聚合物的性能。
[0007]
实现本发明目的的技术方案是提供一种全共轭嵌段聚合物半导体材料,它的结构式为:
[0008][0009]
其中:d1和d2独立地代表具有给电子能力的未取代或含有取代基的下述基团中的任意一种:单环亚芳基,双环亚芳基、含至少三个环的亚芳基、单环杂亚芳基、双环杂亚芳基和含至少三个环的杂亚芳基;d1和d2的侧链具有下述基团中的任意一种:氢,具有1~30个碳原子的烷基,具有1~30个碳原子的含芳环或芳杂环的烷基;a1和a2为具有拉电子能力的未取代或含有取代基的下述基团中的任意一种:单环亚芳基,双环亚芳基、含至少三个环的多环亚芳基、单环杂亚芳基、双环杂亚芳基和含至少三个环的多环杂亚芳基;所述的单环,双环或多环的亚芳基和杂亚芳基,环与环之间为稠合或通过单键连接;a1和a2的侧链具有下述基团中的任意一种:氢,具有1~30个碳原子的烷基,具有1~30个碳原子的含芳环或芳杂环的烷基;n代表聚合物的重复单元个数,为5~500之间的自然数。
[0010]
本发明技术方案还包括上述全共轭嵌段聚合物半导体材料的制备方法,包括如下步骤:
[0011]
(1)以四三苯基膦钯为催化剂,无水甲苯和二甲基甲酰胺为反应溶剂,按摩尔比1:1,将给体单元d1和受体单元a1,或给体单元d2和受体单元a2,在温度为110℃的条件下进行stille交叉偶联反应40~60min,制备d1-a1或d2-a2结构聚合物溶液;
[0012]
(2)将给体单元d2和受体单元a2以摩尔比1:1溶于无水甲苯,加入到步骤(1)制备的结构为d1-a1的聚合物溶液中,或将给体单元d1和受体单元a1以摩尔比1:1溶于无水甲苯,加入到步骤(1)制备的d2-a2结构聚合物溶液中,进行stille交叉偶联反应,得到[d1-a1]
n-[d2-a2]
n
结构的全共轭嵌段聚合物半导体材料;
[0013]
其中,d1和d2独立地代表具有给电子能力的未取代或含有取代基的下述基团中的任意一种:单环亚芳基,双环亚芳基、含至少三个环的亚芳基、单环杂亚芳基、双环杂亚芳基和含至少三个环的杂亚芳基;d1和d2的侧链具有下述基团中的任意一种:氢,具有1~30个碳原子的烷基,具有1~30个碳原子的含芳环或芳杂环的烷基;a1和a2为具有拉电子能力的未取代或含有取代基的下述基团中的任意一种:单环亚芳基,双环亚芳基、含至少三个环的多环亚芳基、单环杂亚芳基、双环杂亚芳基和含至少三个环的多环杂亚芳基;所述的单环,双环或多环的亚芳基和杂亚芳基,环与环之间为稠合或通过单键连接;a1和a2的侧链具有下述基团中的任意一种:氢,具有1~30个碳原子的烷基,具有1~30个碳原子的含芳环或芳杂环的烷基;n代表聚合物的重复单元个数,为5~500之间的自然数。
[0014]
本发明上述技术方案中,d1和d2基团包括如下单元:
[0015]
b-p2tidic)的合成路线示意图;
[0029]
图3是本发明实施例1制备的聚合物p1的氢谱核磁谱图;
[0030]
图4是本发明实施例1制备的聚合物p1在不同溶剂中的紫外-可见吸收光谱图;
[0031]
图5是本发明实施例1制备的聚合物p1在不同溶剂中的电学性质;
[0032]
图6是本发明实施例2提供的聚合物太阳能电池器件结构示意图;
[0033]
图7是本发明实施例2以聚合物p1为光敏层制备的太阳能电池中电流-电压特性图;
[0034]
图8是本发明实施例2以聚合物p1为光敏层制备的太阳能电池中外量子效率图;
[0035]
图9是本发明实施例1制备的聚合物p1在不同溶剂中的原子力显微镜形貌图;
[0036]
图10和11分别是本发明实施例3制备的全共轭嵌段聚合物半导体材料p2(pbdb-t-b-pty6)的合成路线示意图;
[0037]
图12是发明实施例3制备的聚合物p2的氢谱核磁谱图;
[0038]
图13是发明实施例1、3采用的给受体材料制备的聚合物p1和p2的[d1-a1]
n-[d2-a2]
n
结构示意图。
具体实施方式
[0039]
下面结合附图和实施例对本发明技术方案作进一步的说明。
[0040]
本实施方案所用的原料为已知化合物,可在市场上购得,或可用本领域已知的方法合成。
[0041]
实施例1
[0042]
本实施例提供一种全共轭嵌段聚合物半导体材料,记作p1(pbdb-t-b-p2tidic),其结构式为:
[0043][0044]
可分别采用图1或图2的合成路线。原料m1、m3为给体,m2、m4为受体,它们的结构式如下:
[0045][0046]
参见附图1,它是本实施例提供的一种全共轭嵌段聚合物半导体材料p1(pbdb-t-b-p2tidic)的合成路线示意图;具体步骤如下:
[0047]
取36.75毫克m1(0.0406mmol)和31.15毫克m2(0.0406mmol)加入150毫升反应管中,加入催化剂四三苯基膦钯3.5毫克,封闭后抽真空,在氮气气氛下注入2.5毫升无水甲苯和0.25毫升二甲基甲酰胺,逐渐升温至110℃,搅拌反应40~60分钟。
[0048]
将70毫克m3(0.0406mmol)和20.02毫克m4(0.0406mmol)溶于2毫升甲苯,注入上述反应溶液中,继续在110℃下搅拌反应24小时。反应完毕后将聚合物冷却至室温,用胶头滴管滴入80毫升甲醇中,沉淀的聚合物过滤后在索氏提取器中依次用丙酮、正己烷、氯仿洗涤,最后用将氯仿溶液浓缩后沉淀到甲醇中,过滤,60℃真空干燥24小时得到深紫色的薄膜状聚合物,记作p1(pbdb-t-b-p2tidic),产率80%。它的数均分子量为mn=20k,分散度pdi=2.0。
[0049]
参见附图2,它是本实施例提供的另一种制备全共轭嵌段聚合物半导体材料p1(pbdb-t-b-p2tidic)的合成路线示意图;具体步骤如下:
[0050]
取70毫克m3(0.0406mmol)和20.02毫克m4(0.0406mmol))加入150毫升反应管中,加入催化剂四三苯基膦钯3.5毫克,封闭后抽真空,在氮气气氛下注入2.5毫升无水甲苯和0.25毫升二甲基甲酰胺,逐渐升温至110℃,搅拌反应40~60分钟。
[0051]
将36.75毫克m1(0.0406mmol)和31.15毫克m2(0.0406mmol)溶于2毫升甲苯,注入上述反应溶液中,继续在110℃下搅拌反应24小时。反应完毕后将聚合物冷却至室温,用胶头滴管滴入80毫升甲醇中,沉淀的聚合物过滤后在索氏提取器中依次用丙酮、正己烷、氯仿洗涤,最后用将氯仿溶液浓缩后沉淀到甲醇中,过滤,60℃真空干燥24小时得到深紫色的薄膜状聚合物,记作p1(pbdb-t-b-p2tidic),产率80%。它的数均分子量为mn=20k,分散度pdi=2.0。
[0052]
参见附图3,为本实施例制备的聚合物p1的氢谱核磁谱图。
[0053]
参见附图4,为本实施例制备的聚合物p1在不同溶剂中的薄膜紫外可见吸收光谱,本发明制备的d1-a1-d2-a2结构聚合物材料,相比于传统的d-a型聚合物共轭材料,具有较
宽的吸收光谱,并可进行精确的微调;
[0054]
参见附图5,为本实施例制备的聚合物p1在不同溶剂中的电学性质;通过紫外光电子能谱确定聚合物p1的homo和lumo能级,该能级结构有利于光生激子的分离。
[0055]
实施例2
[0056]
参见附图6,为本实施例提供的聚合物太阳能电池器件结构示意图;以本发明为给体材料的聚合物太阳能电池器件,可包括玻璃和导电玻璃(ito)衬底层,电子传输层(zno),光敏层(p1),空穴传输层(mno3)和电极(ag)。
[0057]
聚合物太阳能电池器件可按本领域已知方法制作,如按参考文献(adv.funct.mater.2013,23,885.)公开的方法制作。具体方法为:导电玻璃(ito)依次用洗涤剂、异丙醇、丙酮各超声清洗20分钟,将经过清洗的ito首先臭氧15-20分钟,旋涂zno薄膜(转速4500转每分钟,时间40秒),150度退火10分钟,然后转移到手套箱中,旋涂实施例1制备的聚合物p1的氯苯/氯仿(cb/cf)溶液(重量比1/1.5,总浓度20毫克每毫升),转速1200转每分钟,旋涂100秒,然后在真空度1.0
×
10-6
mbar下依次蒸镀10纳米厚的moo3(速度0.2埃每秒),120纳米厚的银电极(速度0.3埃每秒),制得如图6所示的器件,各种器件的结构如下:
[0058]
器件1:
[0059]
ito/zno(30nm)/pbdb-t-b-p2tidic(cf处理)/moo3/ag(120nm);
[0060]
器件2:
[0061]
ito/zno(30nm)/pbdb-t-b-p2tidic(cf+3%cn处理)/moo3/ag(120nm);
[0062]
器件3:
[0063]
ito/zno(30nm)/pbdb-t-b-p2tidic(cb处理)/moo3/ag(120nm);
[0064]
器件4:
[0065]
ito/zno(30nm)/pbdb-t-b-p2tidic(cb+3%cn处理)/moo3/ag(120nm);
[0066]
器件的电流-电压特性是在标准太阳光照射下(am 1.5g,100mw/cm2,newport,class aaa solar simulator,94023a-u),由带有校正过的硅光电二极管的keithley光源测量系统(keithley 2400sourcemeter)完成的,外量子效率由经过认证的卓立汉光solarcellscan100测量的,所有测量均在氮气中完成。器件的性能数据参见下表1。
[0067]
表1
[0068][0069]
参见附图7,它是本实施例提供的器件1~4的电流-电压特性曲线图。
[0070]
参见附图8,它是本实施例提供的以聚合物p1为光敏层的太阳能电池中外量子效
率图。
[0071]
参见附图9,它是本实施例提供的聚合物p1在不同溶剂中的原子力显微镜形貌图。
[0072]
结果表明,本发明制备的d1-a1-d2-a2结构型共轭聚合物材料是一种优异的有机光电材料,这种新型的设计结构具有广阔的前景,能进一步的提升有机半导体材料的性能。
[0073]
实施例3
[0074]
本实施例提供一种全共轭嵌段聚合物半导体材料,记作p2,其结构式为:
[0075][0076]
p2的制备可分别采用图10或图11的合成路线图。m1、m2采用实施例1提供的原料,原料pty6的结构式为:
[0077][0078]
参见附图10,它是本实施例提供的一种制备全共轭嵌段聚合物半导体材料p2的合成路线示意图;具体步骤如下:
[0079]
取36.75毫克m1(0.0406mmol)和31.15毫克m2(0.0406mmol)加入150毫升反应管中,加入催化剂四三苯基膦钯3.5毫克,封闭后抽真空,在氮气气氛下注入2.5毫升无水甲苯和0.25毫升二甲基甲酰胺,逐渐升温至110℃,搅拌反应40~60分钟。
[0080]
将80.19毫克(0.0406mmol)pty6溶于2毫升甲苯,注入上述反应溶液中,继续在110℃下搅拌反应24小时。反应完毕后将聚合物冷却至室温,用胶头滴管滴入80毫升甲醇中,沉淀的聚合物过滤后在索氏提取器中依次用丙酮、正己烷、氯仿洗涤,最后用将氯仿溶液浓缩后沉淀到甲醇中,过滤,60℃真空干燥24小时得到深紫色的薄膜状聚合物,记作p2,产率80%。它的数均分子量为mn=20k,分散度pdi=2.0。
[0081]
参见附图11,它是本实施例提供的另一种制备全共轭嵌段聚合物半导体材料p2的合成路线示意图;具体步骤如下:
[0082]
取80.19毫克(0.0406mmol)pty6加入150毫升反应管中,加入催化剂四三苯基膦钯
3.5毫克,封闭后抽真空,在氮气气氛下注入2.5毫升无水甲苯和0.25毫升二甲基甲酰胺,逐渐升温至110℃,搅拌反应40~60分钟。
[0083]
将36.75毫克m1(0.0406mmol)和31.15毫克m2(0.0406mmol)溶于2毫升甲苯,注入上述反应溶液中,继续在110℃下搅拌反应24小时。反应完毕后将聚合物冷却至室温,用胶头滴管滴入80毫升甲醇中,沉淀的聚合物过滤后在索氏提取器中依次用丙酮、正己烷、氯仿洗涤,最后用将氯仿溶液浓缩后沉淀到甲醇中,过滤,60℃真空干燥24小时得到深紫色的薄膜状聚合物,产率80%。它的数均分子量为mn=20k,分散度pdi=2.0。
[0084]
参见附图12,为本实施例制备的聚合物p2的氢核磁谱图。
[0085]
以本实施例提供的聚合物p2为光敏层,按实施例2技术方案制备太阳能电池。
[0086]
参见附图13,为本发明实施例1和3采用的给受体材料制备的聚合物p1和p2的[d1-a1]
n-[d2-a2]
n
结构示意图。

起点商标作为专业知识产权交易平台,可以帮助大家解决很多问题,如果大家想要了解更多知产交易信息请点击 【在线咨询】或添加微信 【19522093243】与客服一对一沟通,为大家解决相关问题。

此文章来源于网络,如有侵权,请联系删除

tips