HI,欢迎来到起点商标网!
24小时服务QQ:2880605093

磷酸酯类离子液体及其制备方法和应用及萃取方法与流程

2021-02-01 21:02:38|225|起点商标网
磷酸酯类离子液体及其制备方法和应用及萃取方法与流程

[0001]
本发明涉及锂萃取技术领域,具体涉及一种磷酸酯类离子液体及其制备方法和应用及萃取方法。


背景技术:

[0002]
有21世纪“白色黄金”之称的锂是原子半径最小、质量最轻的碱金属,因其具有独特的物理化学性质,在航空航天、锂电池、铝锂合金、高铁、飞机、军事和海洋等领域的应用广泛,锂及锂盐已被视为重要的新型能源和战略资源。锂在自然界的存在形式主要有固体锂矿石和富锂天然水,其中盐湖卤水中的锂是所有经济性锂产品的重要来源。我国具有丰富的盐湖锂资源,主要分布在青海湖区和西藏湖区。相比于国外盐湖,我国盐湖锂资源的特点是镁锂质量浓度比相对较高,一般高达40-1200。由于锂和镁在元素周期表中处于对角线位置,锂和镁的化学性质十分相近,这导致从卤水分离提取锂十分困难。溶剂萃取法是一种适用于高镁锂比盐湖卤水提锂的最有效、最易实现工业的方法之一,具有操作方便、流程简单、效率较高等优点。其中萃取效果较好的是磷酸三丁酯(tbp)/三氯化铁(fecl3)/煤油体系,在该体系中fecl3作为协萃剂加入到盐湖卤水中,与卤水中存在的cl-形成lifecl4络合物,lifecl4再与tbp反应,形成配合物进入有机相,实现对锂离子的分离。该类萃取体系对锂的萃取效率较高,但是该体系需在强酸条件进行萃取,设备腐蚀严重,萃取剂溶损较大,体系中大量挥发性有机溶剂的使用也会对环境造成污染。
[0003]
离子液体作为一种新型绿色溶剂,完全由正负离子组成,具有高稳定性、良好的溶解性、极低的蒸气压、可设计性等特点,有望取代传统挥发性有机溶剂。现有技术中有利用咪唑六氟磷酸盐或咪唑双亚胺盐离子液体作为共萃剂,从盐湖卤水中分离锂离子。但所使用的咪唑六氟磷酸盐或咪唑双亚胺盐离子液体本身不具有萃取锂的功能,而是在体系中通过阳离子交换的方式提高锂的萃取率。这导致离子液体的咪唑阳离子在萃取过程中被交换到卤水水溶液中,造成离子液体的损失。因此,急需设计一种新型离子液体,使其能够作为锂的萃取剂使用,避免阳离子交换导致的损失。


技术实现要素:

[0004]
针对现有技术中的上述不足,本发明提供了一种磷酸酯类离子液体及其制备方法和应用及萃取方法,将对锂有较强萃取性能的磷酸酯基引入离子液体的阳离子中,同时选择六氟磷酸根或双三氟甲基磺酰亚胺为阴离子,制得磷酸酯类离子液体,将该磷酸酯类离子液体作为萃取剂,对盐湖卤水中的锂离子进行萃取分离,有效解决了现有技术中萃取效率低和离子液体损失等问题。
[0005]
为实现上述目的,本发明解决其技术问题所采用的技术方案是:提供一种磷酸酯类离子液体的制备方法,包括以下步骤:
[0006]
(1)将磷酸二烷基酯在10-15℃冰水浴和碱性条件下滴加在溴代烷基醇中,撤去冰水浴在室温下反应3-5h,然后依次经稀释、过滤、洗涤、干燥和减压,得化合物i;磷酸二烷基
酯和溴代烷基醇摩尔比为1:1-1.5;
[0007]
(2)将步骤(1)所得化合物i和烷基咪唑混合,在室温下搅拌36-60h,然后用乙酸乙酯洗涤纯化,真空干燥,得化合物ii;化合物i和烷基咪唑摩尔比为1:1-2;
[0008]
(3)将步骤(2)所得化合物ii与六氟磷酸盐或双三氟甲基磺酰亚胺盐混合,在室温下搅拌反应20-28h,然后依次经静置、分离、洗涤和真空干燥,得磷酸酯类离子液体;化合物ii与六氟磷酸盐或双三氟甲基磺酰亚胺盐摩尔比为1:1-2。
[0009]
进一步,步骤(1)中,用二氯甲烷进行稀释和过滤,然后依次用2vt%稀盐酸洗涤2-4次,去离子水洗涤2-4次,再用无水硫酸钠干燥,减压除去四氯化碳和二氯甲烷。
[0010]
进一步,磷酸二烷基酯结构式为:溴代烷基醇结构式为:烷基咪唑结构式为:其中,r1和r2为c2-c8的直链或带直链的烷基,r3为c1-c8的直链或带直链的烷基,n为0-8之间的整数。
[0011]
进一步,六氟磷酸盐为六氟磷酸锂、六氟磷酸钠和六氟磷酸钾中的至少一种;双三氟甲基磺酰亚胺盐为双三氟甲基磺酰亚胺锂、双三氟甲基磺酰亚胺钠和双三氟甲基磺酰亚胺钾中的至少一种。
[0012]
在制备磷酸酯类离子液体时,第一步,磷酸二烷基酯和溴代烷基醇在碱性条件下得化合物i(溴代烷基磷酸酯),其反应式如下:
[0013][0014]
第二步,化合物i和烷基咪唑反应得化合物ii(溴代咪唑类离子液体),其反应式如下:
[0015][0016]
第三步,化合物ii与六氟磷酸盐或双三氟甲基磺酰亚胺盐反应得目标产物磷酸酯类离子液体(化合物iii或化合物iv),其反应式如下:
[0017][0018]
上述磷酸酯类离子液体的制备方法制得的磷酸酯类离子液体。
[0019]
上述磷酸酯类离子液体在萃取锂中的应用。
[0020]
一种利用磷酸酯类离子液体萃取锂的方法,包括以下步骤:
[0021]
(1)将磷酸酯类离子液体干燥后与稀释剂按体积比1-4:1混合,得萃取有机相;
[0022]
(2)将步骤(1)所得萃取有机相与原料液按体积比0.1-3:1混合,在10-70℃温度下振荡萃取5-360min,离心,得萃余液和负载有机相;
[0023]
(3)在10-70℃温度下,将步骤(2)所得负载有机相与0.01-12mol/l的反萃剂按体积比1-10:1进行反萃,离心,得纯化后的锂溶液。
[0024]
进一步,稀释剂为苯甲醚、氯仿、煤油、二氯甲烷、1,2-二氯乙烷、正己烷、正庚烷、四氯化碳、四氯乙烯、甲苯、二甲苯、二乙苯、溴苯、硝基苯、石油醚、磷酸三丁酯、磷酸三辛酯和三烷基氧化膦中的至少一种。
[0025]
进一步,步骤(2)中,原料液为含锂盐湖卤水,锂离子浓度为0.05-10g/l,且镁锂元素质量比为1-100:1。
[0026]
进一步,步骤(3)中,反萃剂为盐酸溶液或硫酸溶液。
[0027]
综上所述,本发明具有以下优点:
[0028]
1、本发明将对锂有较强萃取性能的磷酸酯基引入离子液体的阳离子中,同时选择六氟磷酸根或双三氟甲基磺酰亚胺为阴离子,制得磷酸酯类离子液体,将该磷酸酯类离子液体作为萃取剂,对盐湖卤水中的锂离子进行萃取分离,不会腐蚀设备,也不会造成环境污染,能够避免离子液体阳离子交换或阴离子交换导致的损失,有效解决了现有技术中萃取效率低和离子液体损失等问题。
[0029]
2、磷酸酯类离子液体利用离子液体具有可设计性的优点,在离子液体的阳离子中引入能和锂络合的功能性基团,实现了从含锂溶液中分离纯化锂的目标,具有较好的萃取性能;同时,磷酸酯类离子液体均为离子组成,几乎不挥发,降低了传统挥发性有机溶剂的使用比例,既保证了离子液体绿色环保的优势,又具有较高的萃取性能。
[0030]
3、磷酸酯类离子液体在应用于盐湖卤水提取锂离子时,萃取过程中不需要加入协萃剂三氯化铁,不需加酸调节ph,降低萃取成本,工艺操作简单,具有较好的应用前景。
具体实施方式
[0031]
实施例1
[0032]
一种磷酸酯类离子液体,其制备方法包括以下步骤:
[0033]
(1)向装有搅拌器、恒压滴液漏斗、温度计及导气管的四口烧瓶中依次加入25wt%氢氧化钠水溶液(35ml)、3-溴丙醇(20.85g)、四氯化碳(30ml)、二氯甲烷(30ml)及四丁基溴化铵(tbab,0.39g),在10-15℃冰水浴条件下将亚磷酸二正丁基酯(36.38g)与四氯化碳(35ml)的混合溶液通过恒压滴液漏斗缓慢滴入上述体系中,撤去冰水浴在室温下反应4h,用二氯甲烷(25ml)进行稀释和过滤,然后依次用2vt%稀盐酸(25ml)洗涤3次,去离子水(25ml)洗涤3次,再用无水硫酸钠干燥,减压除去四氯化碳和二氯甲烷,得化合物i(磷酸-溴代丙基-二正丁基酯);其反应过程如下:
[0034][0035]
(2)将4.97g步骤(1)所得化合物i和1.23g n-甲基咪唑混合,在室温下搅拌48h,然后用乙酸乙酯洗涤纯化,真空干燥24h,得化合物ii(1-(磷酸二正丁基正丙基酯)-3-甲基咪唑溴化物);其反应过程如下:
[0036][0037]
(3)将6.20g步骤(2)所得化合物ii溶于30ml去离子水中,与2.76g六氟磷酸钾的水溶液(30ml去离子水)混合,在室温下搅拌反应24h,然后依次经静置分层、分离有机相、洗涤至水相中不含溴离子为止,真空干燥,得磷酸酯类离子液体(目标离子液体)。其反应过程如下:
[0038][0039]
将上述方法制得的磷酸酯类离子液体应用于萃取锂,其萃取方法包括以下步骤:
[0040]
(1)将磷酸酯类离子液体干燥后与稀释剂二氯乙烷按体积比1:1混合,得萃取有机相;
[0041]
(2)将步骤(1)所得萃取有机相与原料液按体积比2:1混合,在20℃温度下振荡萃取30min,离心,得萃余液和负载有机相;原料液为含锂盐湖卤水,锂离子浓度为2.0g/l,镁离子浓度为90g/l;
[0042]
(3)在20℃温度下,将步骤(2)所得负载有机相与1mol/l的盐酸溶液按体积比1:1进行反萃30min,离心,得纯化后的锂溶液。
[0043]
实施例2
[0044]
一种磷酸酯类离子液体,其制备方法包括以下步骤:
[0045]
(1)向装有搅拌器、恒压滴液漏斗、温度计及导气管的四口烧瓶中依次加入25wt%氢氧化钠水溶液(35ml)、4-溴丁醇(22.95g)、四氯化碳(30ml)、二氯甲烷(30ml)及四丁基溴
二正丁基酯);其反应过程如下:
[0058][0059]
(2)将步骤(1)所得化合物i(5.18g)和n-丁基咪唑(1.86g)混合,在室温下搅拌48h,然后用乙酸乙酯洗涤纯化,真空干燥,得化合物ii;其反应过程如下:
[0060][0061]
(3)将步骤(2)所得化合物ii(7.04g)与双三氟甲基磺酰亚胺钠(4.55g)混合,在室温下搅拌反应24h,然后依次经静置分层、分离有机相、洗涤至水相中不含溴离子为止,真空干燥,得磷酸酯类离子液体(目标离子液体)。其反应过程如下:
[0062][0063]
将上述方法制得的磷酸酯类离子液体应用于萃取锂,其萃取方法包括以下步骤:
[0064]
(1)将磷酸酯类离子液体干燥后与稀释剂正己烷按体积比1:1混合,得萃取有机相;
[0065]
(2)将步骤(1)所得萃取有机相与原料液按体积比2:1混合,在20℃温度下振荡萃取30min,离心,得萃余液和负载有机相;原料液为含锂盐湖卤水,锂离子浓度为2.0g/l,镁离子浓度为90g/l;
[0066]
(3)在20℃温度下,将步骤(2)所得负载有机相与1mol/l的盐酸溶液按体积比1:1进行反萃30min,离心,得纯化后的锂溶液。
[0067]
对比例1
[0068]
一种萃取锂的方法,按照以下步骤进行:
[0069]
(1)配制萃取有机相:将传统离子液体1-丁基-3-甲基咪唑双三氟甲基磺酰亚胺盐([c4mim][ntf2])与稀释剂正己烷按照体积比1:1混合均匀,配制得到萃取有机相。
[0070]
(2)萃取:以含锂盐湖卤水为原料液,其中锂离子浓度为2.0g/l,镁离子浓度为90g/l。将步骤(1)中得到的萃取有机相与原料液按照体积比2:1放入分液漏斗中,在室温20℃条件下,震荡萃取30min。萃取完成后混合溶液经离心分离得到萃余液和负载有机相。
[0071]
(3)采用2mol/l盐酸溶液作为反萃剂对负载有机相进行反萃,负载有机相与反萃剂的体积比为1:1,在室温20℃,反萃时间为30min。反萃取完成后的混合溶液经离心分离回收锂。
[0072]
对比例2
[0073]
一种萃取锂的方法,按照以下步骤进行:
[0074]
(1)配制萃取有机相:将离子液体1-丁基-3-甲基咪唑六氟磷酸盐([c4mim][pf6])
与磷酸三丁酯(tbp)按照体积比1:1混合均匀,配制得到萃取有机相。
[0075]
(2)萃取:以含锂盐湖卤水为原料液,其中锂离子浓度为2.0g/l,镁离子浓度为90g/l。向原料液中加入协萃剂三氯化铁(fecl3),同时为了防止fe
3+
的水解,调节原料液的ph为1.5。将步骤(1)中得到的萃取有机相与原料液按照体积比2:1放入分液漏斗中,在室温20℃条件下,震荡萃取30min。萃取完成后混合溶液经离心分离得到萃余液和负载有机相。
[0076]
(3)采用2mol/l盐酸溶液作为反萃剂对负载有机相进行反萃,负载有机相与反萃剂的体积比为1:1,在室温20℃,反萃时间为30min。反萃取完成后的混合溶液经离心分离回收锂。
[0077]
将实施例1-3和对比例1-2萃取时所得萃余液在6000r/min转速下离心10min,测定萃余液中锂离子的浓度,得锂离子萃取效率;同时将回收得到的锂溶液在8000r/min转速下离心10min,分离得到锂溶液和萃取有机相,测定锂溶液中锂离子的浓度,得锂离子反萃效率,其结果见表1。
[0078]
表1锂离子萃取效率和反萃效率
[0079][0080][0081]
由表1可知,本发明的萃取效率和反萃效率均较高,这是由于本发明将对锂有较强萃取性能的磷酸酯基引入离子液体的阳离子中,同时选择六氟磷酸根或双三氟甲基磺酰亚胺为阴离子,制得磷酸酯类离子液体,该离子液体中存在能和锂络合的功能性基团,能够提高萃取效率。
[0082]
虽然本发明的具体实施方式对本发明进行了详细地描述,但不应理解为对本专利的保护范围的限定。在权利要求书所描述的范围内,本领域技术人员不经创造性劳动即可作出的各种修改和变形仍属本专利的保护范围。

起点商标作为专业知识产权交易平台,可以帮助大家解决很多问题,如果大家想要了解更多知产交易信息请点击 【在线咨询】或添加微信 【19522093243】与客服一对一沟通,为大家解决相关问题。

此文章来源于网络,如有侵权,请联系删除

相关标签: 磷酸
tips