一种基于多孔芳香骨架的形貌可控的碳材料及其制备方法和应用与流程
本发明属于化学及新材料技术领域,具体涉及一种基于多孔芳香骨架的形貌可控碳材料的制备方法和在超级电容器领域中的应用。
背景技术:
随着世界的快速发展,对能源的需求越来越大,人们渴望寻求稳定并可再生的绿色能源。其中,超级电容器作为一类新型的电化学储能设备,具有快速充放电速度、持久循环稳定性和工作环境要求低等众多优点,近年来受到人们的广泛关注。电极材料作为构成超级电容器的重要组成部分,是提高其电化学性能的关键。到目前为止,已有很多材料,例如金属氧化物、金属有机骨架材料、多孔有机聚合物、多孔碳材料等等,可以用于超级电容器中的电极材料。相比其它材料,多孔碳材料具有化学稳定性好、优异的导电性能、均匀的孔道分布等特点受到广泛关注。多孔碳材料通常由其它含碳骨架材料作为前驱体高温碳化处理制备。其中,多孔芳香骨架材料是通过共价键链接构成的有序排列的有机聚合物,具有比表面积大、孔容大、可修饰性强、超高稳定性以及低的骨架密度等优点,因此越来越多的人把其作为多孔碳材料的前驱体。目前,多孔芳香骨架材料在超级电容器的电极材料领域广泛采用引入杂原子提高其比电容,如氧、氮、硼等,但是这些官能团会自发的参与氧化还原反应进行放电行为,导致电容器出现漏电流以及高扫速下比电容下降快等缺点,甚至有气体的析出,材料造成体积膨胀和坍塌,失去超级电容器循环稳定性的优势。因此,合成具有纯碳骨架的聚合物作为电极材料制备优异电化学性能的超级电容器至关重要。
多孔碳材料的比表面积被认为是影响超级电容器性能的关键因素之一,大孔可以作为离子溶液的缓冲储备池,可以缩短离子扩散的距离来提高离子响应的效率;介孔为离子提供扩散通道,降低扩散内阻;微孔通过双层电容原理提高超级电容器的电容。因此,人们为了获得更加合理、平衡的孔径分布通常采用化学活化法,将材料与活化剂混合在进行高温处理,常见活化剂如:koh、zncl2、k2co3等等,借助活化剂对材料进行刻蚀,来进一步提高比表面积和丰富孔径分布。但是这些方法通常会造成繁琐的后处理,难以完全去除活化剂,并且会造成环境污染和设备腐蚀。因此,采用直接碳化方式可以有效避免上述问题。高温碳化获得合理孔径分布的同时又可以增加材料的石墨化程度来提高其导电性能。
多孔碳材料的形貌也是影响超级电容器电化学性能的关键因素之一。通常认为具有块状形貌的材料在作为电极材料时容易发生重叠和团聚的现象,使材料有效的比表面积减少,并且不利于电解液离子进入孔道内部增大扩散阻力,从而影响电化学性能;而具有中空管状形貌的材料可以有效的降低材料的密度,同时管状结构有利电子传输,薄壁的管状结构有利于电解液离子快速渗透浸润整个管状内部。因此,我们在反应体系中简单调整反应单体的投料比,其它反应条件不变,成功合成形貌可控的多孔芳香骨架材料,将其作为前驱体通过直接高温碳化方式,制备得到的多孔碳材料仍保持其初始形貌。本发明操作简单、对环境友好、适用广泛,为定向制备形貌可控的多孔碳材料和提高超级电容器的电化学性能提供了新的方法。
技术实现要素:
:
本发明的目的提供一种简便可行的方法制备形貌可控的多孔芳香骨架材料,将其高温碳化后作为电极材料应用于超级电容器领域。
本发明的目的是通过以下技术方案实现的:一种基于多孔芳香骨架的形貌可控碳的材料,结构式如(ⅰ)所示,
上述的一种基于多孔芳香骨架的形貌可控碳的材料的制备方法,包括如下步骤:
1)在氮气条件下,将1,4-二溴萘与1,4-二乙炔基苯加入到反应容器中;
2)将四(三苯基磷)钯、碘化亚铜加入到反应容器中,然后将无水n,n'-二甲基甲酰胺和无水三乙胺注入反应体系中;
3)在氮气条件下,将反应体系加热到80℃,反应3天停止;
4)降到室温后,过滤,得到的粗产物用氯仿、甲醇和丙酮反复洗涤多次;
5)用四氢呋喃作溶剂索氏提取3天,真空下90℃干燥10小时,得到具有管状形貌聚合物t-lnu或块状形貌聚合物b-lnu。
上述的一种基于多孔芳香骨架的形貌可控碳的材料的制备方法,1,4-二溴萘、1,4-二乙炔基苯和n,n'-二甲基甲酰胺的摩尔之比为1:1.25:82.13-90.40时,最终产物为管状形貌的前驱体t-lnu;1,4-二溴萘、1,4-二乙炔基苯和n,n'-二甲基甲酰胺的摩尔之比为1:1.25:127.67-140.53,制备具有块状形貌的前驱体b-lnu。
上述的一种基于多孔芳香骨架的形貌可控碳的材料的制备方法,按质量比,1,4-二溴萘:四(三苯基磷)钯:碘化亚铜=45.3:3:1。
上述的任一种基于多孔芳香骨架的形貌可控碳的材料的制备方法,还包括如下步骤,将t-lnu或b-lnu作为前驱体在氮气氛围下,升温至800℃-950℃进行碳化,得到具有管状形貌多孔碳材料t-lnu-x或块状形貌多孔碳材料b-lnu-x,其中x代表碳化温度。
上述的制备方法,升温速率为2℃min-1。
上述的一种基于多孔芳香骨架的形貌可控碳的材料作为电极材料在超级电容器中的应用,采用三电极体系,以负载管状形貌多孔碳材料t-lnu-x或块状形貌多孔碳材料b-lnu-x的玻碳电极作为工作电极,铂箔为对电极,标准ag/agcl电极为参比电极,1mh2so4水溶液为电解液。
上述的应用,所述的工作电极的制备方法为,将5mg负载管状形貌多孔碳材料t-lnu-x或块状形貌多孔碳材料b-lnu-x极材料放在装有1ml0.05wt%nafion溶液的瓶中,超声30min,得到分散液,将25μl的分散液转移到镜面抛光的玻碳电极上,在30℃的烘箱中干燥4h。
在反应溶剂和催化剂不变的条件下,通过改变反应单体1,4-二溴萘和1,4-二乙炔基苯的投料比,在四(三苯基磷)钯和碘化亚铜的催化下利用sonogashira-hagihara偶联反应制备具有不同形貌的多孔芳香骨架材料,将其作为前驱体在高温下碳化得到多孔碳材料并应用于超级电容器的电极材料中。
本发明的有益结果是:
本发明采用廉价单体,反应条件温和,通过不改变其它反应条件下调整反应单体投料比,合成具有完全不同形貌的多孔芳香骨架材料lnu,充分发挥形貌对超级电容器的电化学性能的优势,制备高性能电极材料。
本发明通化sonogashira-hagihara偶联反应得到纯碳骨架的多孔芳香骨架材料,有效解决了含杂原子的电极材料在高扫速下电化学性能差和循环稳定性差等问题,该材料具有优异的电化学性能,其中t-lnu-900在2mvs-1扫速下,初始比电容为285fg-1,在能源存储领域具有较好竞争力。同时,该材料在10mvs-1的扫速下循环5000次,电容保持率在91.5%,展现出优异的稳定性,在超级电容器领域具有良好的应用前景。
本发明将多孔芳香骨架材料作为前驱体直接高温碳化制备多孔碳材料,相比其它处理方法,操作简单、不破坏原始形貌、对环境友好等优势,为今后提高超级电容器的电化学性能提供方案。
附图说明
图1:本发明合成的多孔芳香骨架材料t-lnu、b-lnu和对应反应单体的红外谱图;
图2:本发明合成的多孔芳香骨架材料t-lnu和b-lnu的拉曼光谱图;
图3:本发明合成的多孔芳香骨架材料t-lnu和b-lnu的粉末x-射线衍射图;
图4:本发明合成的多孔芳香骨架材料t-lnu和b-lnu的热重图;
图5-1:本发明合成的t-lnu碳化前后的扫描和透射电镜图;
图5-2:本发明合成的b-lnu碳化前后的扫描和透射电镜图;
图6-1:本发明合成的t-lnu碳化后t-lnu-x的粉末x-射线衍射图;
图6-2:本发明合成的b-lnu碳化后b-lnu-x的粉末x-射线衍射图;
图7-1:本发明合成的t-lnu碳化后t-lnu-x的拉曼光谱图;
图7-2:本发明合成的b-lnu碳化后b-lnu-x的拉曼光谱图;
图8-1:本发明合成的t-lnu碳化后t-lnu-x的氮气吸附-脱附等温线图;
图8-2:本发明合成的t-lnu碳化后t-lnu-x的孔径分布图;
图8-3:本发明合成的b-lnu碳化后b-lnu-x的氮气吸附-脱附等温线图;
图8-4:本发明合成的b-lnu碳化后b-lnu-x的孔径分布图;
图9-1:本发明合成的t-lnu碳化后t-lnu-x的循环伏安图;
图9-2:本发明合成的b-lnu碳化后b-lnu-x的循环伏安图;
图10-1:本发明合成的多孔碳材料t-lnu-900不同扫速下的循环伏安图;
图10-2:本发明合成的多孔碳材料b-lnu-900不同扫速下的循环伏安图;
图11-1:本发明合成的多孔碳材料t-lnu-900不同电流密度下的恒流充放电图;
图11-2:本发明合成的多孔碳材料b-lnu-900不同电流密度下的恒流充放电图;
图12:本发明合成的多孔碳材料t-lnu-900、b-lnu-900在频率范围105-10-2的nyquist曲线;
图13:本发明合成的多孔碳材料t-lnu-900、b-lnu-900在扫速10mvs-1下的稳定性。
具体实施方式
以下是本发明的实施例,有助于理解本发明,但本发明的保护范围并不限于此内容。
实施例1前驱体多孔芳香骨架材料t-lnu的制备
1样品的合成:
在氮气条件下,将1,4-二溴萘(1.584mmol,453mg)与1,4-二乙炔基苯(1.980mmol,250mg),30mg四(三苯基磷)钯,10mg碘化亚铜加入到三颈瓶中,然后用注射的方式加入10ml无水的n,n'-二甲基甲酰胺和8ml无水三乙胺,加热到80℃反应3天。
2样品的后处理:
待反应结束后,冷却到室温,对其分别用氯仿、水和丙酮溶剂多次洗涤,得到粗产品。随后用四氢呋喃索氏提取3天,对粗产品进行进一步纯化。得到的样品在90℃下真空干燥10h得到管状形貌t-lnu样品。
实施例2前驱体多孔芳香骨架材料b-lnu的制备
1样品的合成:
在氮气条件下,将1,4-二溴萘(1.019mmol,291mg)与1,4-二乙炔基苯(1.274mmol,161mg),30mg四(三苯基磷)钯,10mg碘化亚铜加入到三颈瓶中,然后用注射的方式加入10ml无水的n,n'-二甲基甲酰胺和8ml无水三乙胺,加热到80℃反应3天。
2样品的后处理:
待反应结束后,冷却到室温,对其分别用氯仿、水和丙酮溶剂多次洗涤,得到粗产品。随后用四氢呋喃索氏提取3天,对粗产品进行进一步纯化。得到的样品在90℃下真空干燥10h得到块状形貌b-lnu样品。
本发明制备的多孔芳香骨架材料反应方程式如下所示:
实施例3管状形貌多孔碳材料t-lnu-800、t-lnu-900、t-lnu-950的制备
将实施例1制备得到的t-lnu置于石英舟中,然后放入水平管式炉中,在氮气的氛围中以2℃min-1的升温速度分别升温至800℃、900℃、950℃保持60min,得到的样品分别为t-lnu-800、t-lnu-900、t-lnu-950。
实施例4块状形貌多孔碳材料b-lnu-800、b-lnu-900、b-lnu-950的制备
将实施例2制备得到的b-lnu置于石英舟中,然后放入水平管式炉中,在氮气的氛围中以2℃min-1的升温速度分别升温至800℃、900℃、950℃保持60min,得到的样品分别为b-lnu-800、b-lnu-900、b-lnu-950。
实施例5电极材料的制备
上述得到的材料采用三电极体系下测试电容器的电化学性能,其中工作电极为负载材料的玻碳电极,对电极为铂箔,参比电极为标准ag/agcl电极,1mh2so4水溶液为电解液。
上述的进行电化学测试中制备电极材料具体方案如下:将5mg样品放在装有1ml0.05wt%nafion溶液的小瓶中,将其超声30min分散均匀,将25μl的分散液转移到镜面抛光的玻碳电极上,最后在30℃的烘箱中干燥4h。
实施例6性能测试
图1:本发明制备的最终产物和对应反应单体的红外光谱对比图中,我们能够清楚地观察到(1)c-br键的特征吸收峰(495cm-1)在最终产物中消失,证明了单体中c-br键的断裂;(2)在产物中单体c≡h振动(3300cm-1)的消失证明了两个原料之间确实发生了偶联反应;(3)在最终产物的红外光谱图中位于2200cm-1附近观察到炔基-c≡c-的特征吸收峰。综上所述证明多孔芳香骨架材料成功聚合。通过控制原料投料比合成的聚合物t-lnu和b-lnu,从红外谱图可以看出两种聚合物具有相同的官能团,为同一种聚合物。
图2~图3:通过拉曼光谱以及粉末x-射线衍射可以看出两种聚合物t-lnu和b-lnu具有相同的官能团和骨架构型,为同一种聚合物。从图3中可以看到两种聚合物的粉末x-射线衍射出现宽大衍射峰,均为无定型结构。
图4:在氮气氛围测试条件下,聚合物t-lnu和b-lnu的热重谱图。可以看到t-lnu直到300℃时才开始分解,在800℃左右质量损失仅为18%。b-lnu在250℃开始分解,当加热到800℃时,质量损失达20%。以上结果说明这两种材料都具有非常好的热稳定性;同时对t-lnu和b-lnu做了溶解性测试,将样品置入dmso、氯仿、四氢呋喃等常规性有机溶剂,没有发现明显的溶解或者分解现象,表现出良好化学稳定性。
图5-1~图5-2:图5-1是t-lnu和t-lnu-x的扫描(a,b,c,d)和透射电镜图(e,f,g,h),从图a的扫描电镜图和图e的透射电镜图可以看出前驱体t-lnu为中空的管状形貌,对比碳化前后形貌发现即使在不同碳化温度材料仍保持中空管状原貌,没有出现明显的塌陷。图5-2为b-lnu和b-lnu-x的扫描(a,b,c,d)和透射电镜图(e,f,g,h),从图中可以看出前驱体b-lnu为块状形貌,碳化后仍保持原始的块状形貌。以上结果说明材料经过碳化后仍保持其原有形貌。
图6-1~图6-2:t-lnu-x和b-lnu-x的pxrd图上2θ=20°-30°和2θ=40°-50°两处的宽峰归因于(002)晶面衍射峰和(101)晶面衍射峰,说明材料仍然保持无定型结构但是通过碳化使其具有一定的石墨化,有利于增强其导电性能。
图7-1~图7-2:从t-lnu-x和b-lnu-x的拉曼光谱图可以看见在1350cm-1和1580cm-1附近出现了两个表征明显的特征峰。其中,1350cm-1附近的峰代表称d峰,d峰主要是由材料内部存在的石墨晶格缺陷和碳原子的无序排列引起的;而在1580cm-1附近的峰为g峰,是石墨层状结构典型的sp2杂化特征峰。计算材料的石墨化程度id/ig(d峰和g峰强度的相对比值)两种材料在不同的碳化温度下比值在0.83-1.01之间,随着碳化温度越高,其比值越大,即石墨化程度越高,这与通过pxrd图观察的结果相一致。
图8-1~图8-4:本发明制备得到的多孔芳香骨架材料经过碳化后的氮气吸附-脱附曲线,均为ι型等温线,说明具有大量微孔。同时t-lnu-900和b-lnu-900在p/p0=0.5~1.0之间存在吸附滞后环,说明还含有介孔,孔径分布图也证实了该结论。通过氮气吸附-脱附等温线,计算出t-lnu-900和b-lnu-900的bet比表面积分别为684.1m2g-1和644.9m2g-1。孔体积分别为0.55cm3g-1和0.26cm3g-1。
图9-1~图9-2:本发明制备得到的多孔芳香骨架材料经过碳化后在10mvs-1扫速下的循环伏安图。图型均呈现一个准矩形,通过对比不同碳化温度的多孔碳材料发现t-lnu-900、b-lnu-900具有最高的面积,计算出比电容分别为253fg-1和159fg-1。这是因为在900℃碳化的材料比表面积最高,有利增强电极材料的双电层电容。同时孔道的弯曲程度以及长度等形貌会影响离子扩散内阻从而影响比电容,与块状形貌的b-lnu相比,中空管状形貌的t-lnu材料孔道均匀,更有利于电解质溶剂的扩散和电子传输。
图10-1~图10-2:本发明制备得到t-lnu-900和b-lnu-900在2-200mvs-1不同扫速下的循环伏安图。可以看见即使在200mvs-1扫速下,图形仍然保持准矩形形状,说明材料具有超高的稳定性,计算出在2mvs-1扫速下t-lnu-900和b-lnu-900的比电容分别为285fg-1和245fg-1。
图11-1~图11-2:本发明制备得到t-lnu-900和b-lnu-900在不同电流密度下的恒流充放电曲线。曲线呈现标准的倒三角形形状,说明具有良好的可逆性特征,其计算出的比电容与上述结果相吻合。
图12:本发明制备得到t-lnu-900和b-lnu-900的nyquist曲线。如图所示,与b-lnu-900相比,t-lnu-900在中高频区更小的准半圆,而在低频区有一条几乎垂直的线,说明具中空管状形貌的t-lnu-900比块状形貌b-lnu-900具有更低的电荷转移电阻和较快离子扩散速率,这与实际表现出的电化学性能一致。
图13:本发明制备得到t-lnu-900和b-lnu-900在扫速10mvs-1下经过5000次循环后,可以看出t-lnu-900的比电容为初始的91.5%,b-lnu-900为初始的90%,说明该材料具有良好的循环稳定性,表现出作为超级电容器电极材料超稳定性的特点。以上结果说明本发明制备得到的形貌可控多孔碳材料在超级电容器中具有很好的应用前景。
起点商标作为专业知识产权交易平台,可以帮助大家解决很多问题,如果大家想要了解更多知产交易信息请点击 【在线咨询】或添加微信 【19522093243】与客服一对一沟通,为大家解决相关问题。
此文章来源于网络,如有侵权,请联系删除